
GSoC 2025 Application – Sugar Labs

My Details:

Name: Samiksha Sharma
Email: samikshasharma7500@gmail.com
GitHub: https://github.com/samikshaa11
LinkedIn: https://www.linkedin.com/in/samiksha-sharma11
Time Zone: Indianapolis, USA – Eastern Daylight Time (EDT/EST)

I am a graduate student at Purdue University, deeply passionate about coding and
contributing to real-world projects. My experience includes developing projects like Blink
Detection, Hospital Management System, and Netflix Recommendation System during my
master's program. I am excited to contribute to Sugar Labs, particularly the Math Games
project, and leverage my skills to enhance learning experiences through interactive games.

Interest in contributing to Project:

Math Games

Technologies used:

Python: To develop math games with Sugar’s framework.

Sugar Activity API: To integrate and manage Sugar activities, ensuring they work within
Sugar platform.

PyGTK: Designed as Sugar Activity for user interface that will integrate well with Sugar
environment.

SVG/PNG: To design and create visually appealing game assets, including backgrounds,
buttons, and interactive elements, enhancing the user interface.

My Plan for the 8 Games:

1. Four Color Map Game:

mailto:samikshasharma7500@gmail.com
mailto:samikshasharma7500@gmail.com
https://github.com/samikshaa11
https://github.com/samikshaa11
https://www.linkedin.com/in/samiksha-sharma11
https://www.linkedin.com/in/samiksha-sharma11

Description: A game where players color a map with four colors ensuring that no adjacent
regions share the same color.

 Technologies:

• Python for game logic.
• Sugar Activity API to package the game as a Sugar Activity, as it integrates with

Sugar.
• Using the Sugar Network API, I’ll enable players to collaborate in real-time, sharing

their progress and working together to solve the puzzle.
• Backtracking algorithm for the graph coloring logic.

Implementation Details:

• I’ll use graph theory (adjacency matrices or lists) to represent map as a graph
taking each region as a node.

• Implement the backtracking algorithm to try different colors for regions, to check if
no two adjacent regions have the same color.

• Sugar Toolkit – Sugar Activity will be used for creating the interface, including the
map and color palette and it will be designed as a Sugar activity, allowing it to
integrate seamlessly with the Sugar environment. The game state will be saved in
the Sugar Journal for easy access and continued play across sessions.

2. Broken Calculator:

Description: A puzzle where the calculator malfunctions, and players need to fix it by
identifying missing or incorrect functions.
 Technologies:

• Python for core logic and puzzle mechanics.
• PyGTK for GUI design, integrated with the Sugar Activity API to handle activity-

specific functions like startup, shutdown, and saving progress within Sugar’s
environment.

• State-based logic for the calculator's operation and malfunction scenarios.

Implementation Details:

• This game will simulate a calculator that starts with a set of broken operations
(e.g., missing functions or faulty buttons).

• Players will interact with the interface to identify and correct errors in the
calculator's logic, restoring its functionality. The game will save progress in the
Sugar Journal, enabling users to pick up where they left off, while adhering to
Sugar’s lifecycle management. The activity will be designed to follow Sugar's
lifecycle management, ensuring proper start-up and shutdown within the Sugar
environment.

• I’ll use a simple state machine to manage the calculator’s correct and incorrect
states.

3. Soma Cubes:

Description: A 3D puzzle game where players must arrange pieces to form a cube.
 Technologies:

• Python for game logic.
• PyGTK for interface creation. The game will be designed as a Sugar activity,

ensuring that players’ progress is saved in the Sugar Journal. The activity will also
integrate with Sugar’s framework to manage activity lifecycle events such as start,
stop, and resumption of the game.

• 3D models (potentially using PyOpenGL for rendering the pieces).

Implementation Details:

• I’ll define 3D shapes and their corresponding arrangement rules.
• Implement drag-and-drop functionality within the PyGTK interface to move pieces.
• PyOpenGL can be used for rendering the pieces in 3D, providing users with an

interactive, visually engaging puzzle experience.

4. Fifteen Puzzle:

Description: A sliding puzzle game where players arrange tiles in a grid.
 Technologies:

• Python for the game logic.
• PyGTK for UI.

• A search algorithm* for puzzle-solving assistance (optional for hints).

Implementation Details:

• Represent the puzzle grid as a 2D list or matrix.
• I’ll implement the sliding mechanism where tiles will move within the grid. As a

Sugar activity, the game will store the puzzle state in the Sugar Journal, allowing
players to pick up where they left off. The game will also adhere to Sugar's activity
lifecycle, ensuring smooth transitions between states.

• I will implement the A algorithm* to solve the Fifteen Puzzle, helping users find
optimal solutions efficiently, while also providing hints if needed.

5. Euclid’s Game:

Description: A game based on Euclid’s algorithm to find the greatest common divisor
(GCD).
 Technologies:

• Python for the logic and implementation of Euclid's algorithm.
• PyGTK for user interaction and display.

Implementation Details:

• This game will display two numbers, and the player will use Euclid’s algorithm to
calculate their GCD. As a Sugar activity, the game will track and save the player's
progress in the Sugar Journal. It will follow Sugar’s activity lifecycle to ensure proper
management of game state when transitioning between activity states.

• Provide a simple interface where players can input their guesses and see step-by-
step calculations.

• Visualize the steps of the algorithm using simple UI elements to help players
understand the process.

6. Odd Scoring:

Description: A game where players match numbers with specific properties like prime
numbers or even/odd.
 Technologies:

• Python for game logic.
• PyGTK for GUI.

Implementation Details:

• I’ll display a set of numbers and prompt the player to identify whether they are
prime, even, or odd. As a Sugar activity, the game will integrate with Sugar's
Journal, ensuring players' scores and progress are stored for continued play. The
activity will be managed within Sugar’s lifecycle framework for proper handling of
activity states.

• Create a matching system where players drag and drop the numbers into the
correct category.

• Implement a scoring system based on correct matches and a time-based challenge
for difficulty.

7. Make An Identity:

Description: A game where players create valid algebraic identities using numbers and
operators.
 Technologies:

• Python for algebraic identity generation and verification.
• PyGTK for user interface.
• SymPy for symbolic algebra (optional).

Implementation Details:

• Provide a set of numbers and operators for the player to create an identity. The
game will be designed as a Sugar activity, ensuring progress is saved in the Sugar
Journal and providing users with the ability to resume later. The game will also be
integrated into the Sugar platform, utilizing its activity lifecycle management
features.

• Use algebraic rules and basic math verification to check if the identity is valid.
• SymPy can be used to assist in symbolic mathematics to ensure identity

correctness if necessary.

8. Number Detective:

Description: A game where players input a sequence of numbers, and the system guesses
the next number.
 Technologies:

• Python for game logic.
• PyGTK for interface creation.
• Basic pattern recognition algorithms (e.g., arithmetic sequences, geometric

sequences).

Implementation Details:

• Players input a sequence of numbers, and the game tries to identify the next
number based on the sequence’s pattern. As a Sugar activity, the game will store
the number sequences and progress in the Sugar Journal, allowing users to resume
their work later. It will also integrate with the Sugar platform's lifecycle management
to ensure proper handling of the game's start, stop, and resume states.

• Implement simple pattern recognition techniques to detect sequences such as
arithmetic progression or geometric progression.

• Provide feedback if the system makes an incorrect guess, allowing the player to
correct it and learn from the process.

Hours/Duration:

350 hours

After GSoC 2025:

After GSoC 2025, I plan to continue contributing to the Sugar Learning Platform, further
enhancing the Math Games and developing new educational tools to engage and benefit
learners around the world

