
GSoC 2025 | Sugar Labs

Music Blocks 4 Program Engine
GSoC 2025 | Sugar Labs

Basic Information
Project Details

Personal Details

1

Project Name Music Blocks 4 Program Engine

Skills TypeScript 5, Vitest, Vite, Jest, Object-Oriented Programming, Abstract Syntax Trees

Mentors Anindya Kundu, Walter Bender, Devin Ulibarri

Project Size 350 Hours

Name Ravjot Singh

Date of Birth 07-04-2004

Country India (Nationality & Current Residence)

Email ravu2004@gmail.com

Resume Resume

GitHub GitHub

CodeForces CodeForces

Leetcode LeetCode

Linkedin Linkedin

Matrix ravjot07

University Atal Bihari Vajpayee Indian Institute of Information Technology and Management

Course Bachelor of Technology (BTech) in Computer Science & Engineering

Contact Number (+91) 8727954660

Time Zone UTC+05:30 (Asia/Kolkata)

Preferred Language English

https://drive.google.com/file/d/14llE4g39Z2nJyO84TRv9HOlk2M2Tcefh/view?usp=sharing
https://github.com/ravjot07
https://codeforces.com/profile/Ravjot07
https://leetcode.com/u/ravu2004/
https://www.linkedin.com/in/ravjot-singh-6ba229257/

GSoC 2025 | Sugar Labs

Introduction
I’m Ravjot Singh—a passionate developer from Chandigarh, Punjab—with a deep commitment to the open source
community. Over the past years, I’ve actively contributed to projects that make a real impact on education and
technology. My journey with sugar labs began with contributions, where I enhanced projects such as Music
Blocks and Connect the Dots, and many more sugar activities optimizing codebases and introducing new
features to enrich children’s interactive learning experiences. Working with Sugar Labs has not only deepened my
technical expertise but also reinforced my belief in the transformative power of collaborative development.

In addition to my Sugar Labs contributions, I have also been an active member of the Confidential Computing
Consortium at Verasion, where I implemented critical improvements like command functionality enhancements,
continuous integration pipelines, and security validations. These experiences have allowed me to work on both
the front-end and back-end challenges of modern open source projects, ensuring robust performance and
reliability.

Furthermore, my role as an LFX Mentorship Project Contributor at the Cloud Native Computing Foundation on
the Kmesh project has provided me with invaluable insights into designing and deploying end-to-end testing
strategies, streamlining CI workflows, and mentoring new contributors. This mentorship experience not only
honed my technical skills but also reinforced my passion for making a difference through open source
innovation.

My motivation to contribute to open source stems from the desire to build accessible, cutting-edge educational
tools that empower learners—especially children—to explore, experiment, and develop critical thinking skills.
Leveraging my experience with Sugar Labs’ vibrant educational ecosystem and my commitment to continuous
improvement, I am eager to refine and advance the Music Blocks 4 Program Engine. By enhancing its AST-based
execution engine, handling concurrent time-based instructions, and optimizing its performance, I aim to ensure
that Music Blocks remains a groundbreaking platform for creative music composition and interactive learning.

Contributions to Sugar Labs

As an active contributor to the Sugar Labs community, I have worked across multiple repositories including
Music Blocks, Connect the Dots, Mateton, and various game-based Sugar activities. My contributions span UI
improvements, bug fixes, code refactoring, performance enhancements, and documentation updates. I’ve
focused on making the user experience more intuitive and the codebase more maintainable, while also
contributing new features and fixing critical gameplay and rendering bugs. These efforts reflect my dedication to
creating impactful, child-friendly educational tools.

PR Repository Contribution Summary

#3 mateton-activity Remove simplejson dependency and use standard library json instead

2

https://github.com/sugarlabs/mateton-activity/pull/3

GSoC 2025 | Sugar Labs

#2 fourier-series-visul
aisation

feat: display real-time frequency and circle count in UI

#1 fourier-series-visul
aisation

Fix: Prevent "width greater than radius" error in Pygame circle
drawing

#21 connect-the-dots-act
ivity

Updated README with clearer installation and contribution
instructions.

#26 connect-the-dots-act
ivity

Feat: Add Undo and Redo functionality

#24 connect-the-dots-act
ivity

Fixes #23: Updated- lib/sugar-web

#22 connect-the-dots-act
ivity

Refactored redundant JavaScript code to enhance maintainability.

#19 connect-the-dots-act
ivity

Added clear button and refractored code

#4150 musicblocks Add: Test for utils.js

#4117 musicblocks Feat: Added live visual feedback for audio input in Sampler Widget

#42 make-them-fall-activ
ity

Fix: Activity Start error

#18 hittheballs-activity Resolved ball movement issues after game reset.

#562 www Fixed typos

Besides my work with Sugar Labs, I have also contributed to other significant open-source projects, including
Veraison under the Confidential Computing Consortium and Kmesh under the Cloud Native Computing
Foundation (CNCF).

My Contributuions to Project Version:

PR Repository Contribution Summary

#14 cocli Modified command functionality to support unsigned CoRIMs,
improving system compatibility.

3

https://github.com/sugarlabs/fourier-series-visulaisation/pull/2
https://github.com/sugarlabs/fourier-series-visulaisation/pull/1
https://github.com/sugarlabs/connect-the-dots-activity/pull/21
https://github.com/sugarlabs/connect-the-dots-activity/pull/26
https://github.com/sugarlabs/connect-the-dots-activity/pull/24
https://github.com/sugarlabs/connect-the-dots-activity/pull/22
https://github.com/sugarlabs/connect-the-dots-activity/pull/19
https://github.com/sugarlabs/musicblocks/pull/4150
https://github.com/sugarlabs/musicblocks/pull/4117
https://github.com/sugarlabs/make-them-fall-activity/pull/42
https://github.com/sugarlabs/hittheballs-activity/pull/18
https://github.com/sugarlabs/www/pull/562
https://github.com/veraison/cocli/pull/14

GSoC 2025 | Sugar Labs

#10 gen-corim Developed and integrated a CI pipeline for running unit tests on each
commit.

#20 cocli Authored detailed documentation for CoMID templates and extension
points.

#22 cocli Redesigned display options for enhanced modularity and
maintainability.

#143 corim Implemented MAC/IP address validation in Measurement.Valid to
enhance reliability and security.

My Contributuions to Project Kmesh:

PR Title Description

#1277 Add E2E test for Locality
Load Balancing

Developed an end-to-end test validating locality-based traffic
distribution, ensuring correct behavior under load balancing rules.

#1243 feat(authz): Add E2E test for
kmeshctl authz functionality

Implemented tests for authorization CLI commands, improving
coverage and reliability of kmeshctl.

#1238 feat: Add readiness probe for
Kmesh daemon

Added a readiness probe to ensure safe and stable daemon startup before
traffic is accepted.

#1231 Fix CI: Regenerate docs for
authz subcommands

Fixed CI issues by updating auto-generated documentation for
authorization commands.

#1226 Add Unit Tests for logs
Package

Introduced unit tests to increase coverage and validate logging
functionality.

4

https://github.com/veraison/gen-corim/pull/10
https://github.com/veraison/cocli/pull/20
https://github.com/veraison/cocli/pull/22
https://github.com/veraison/corim/pull/143
https://github.com/kmesh-net/kmesh/pull/1277
https://github.com/kmesh-net/kmesh/pull/1243
https://github.com/kmesh-net/kmesh/pull/1238
https://github.com/kmesh-net/kmesh/pull/1231
https://github.com/kmesh-net/kmesh/pull/1226

GSoC 2025 | Sugar Labs

5

Topic Page No.

Personal and Project Details

Introduction

Contributions to Open source

Project Idea

Synopsis

Summary of the Project

What will be Achieved

Deliverables

Proposed Timeline

Availability

Post GSoC Plans

Conclusion

1

2

3-5

6

6

7

8-12

12-14

14

14

15

GSoC 2025 | Sugar Labs

PROJECT IDEA
Synopsis:

This proposal outlines a plan to refine and complete the execution engine for the Music Blocks 4 Program
Engine under Sugar Labs as part of Google Summer of Code (GSoC) 2025. The project is aimed at enhancing an
in-memory AST-based interpreter to support both imperative and declarative syntax, along with robust
time-based instruction execution and concurrent thread management. By leveraging modern TypeScript features,
optimized scheduling, and a plugin-based architecture, this work will significantly improve the Music Blocks
program’s responsiveness, scalability, and maintainability. The final outcome will be a high-performance,
production-ready engine that integrates seamlessly with Sugar Labs’ educational ecosystem and fosters
innovative, interactive music programming experiences.

Summary of the Project:

Music Blocks is an educational platform designed to allow children to create music through visual programming.
While previous iterations have provided a functional baseline, critical improvements are needed to achieve a
production-ready engine capable of managing complex, time-based musical instructions and concurrent
execution. This project will focus on the following key components:

● AST-based Execution Engine: Implement an in-memory interpreter that parses and executes an Abstract
Syntax Tree (AST) representing Music Blocks programs. The AST will support both imperative commands
and declarative instructions for handling musical events.

● Parser and Interpreter: Develop a modular parser that traverses the AST and an interpreter that executes
each node accordingly. These components will work together to process nested control structures,
function calls, loops, and real-time operations.

● Concurrent Thread Execution: Introduce a robust scheduler to manage concurrent threads (or
processes) representing multiple musical sequences. The scheduler will implement cooperative
multitasking to handle time-based instructions without stalling the user interface.

● Time-based Instruction Handling: Incorporate mechanisms to accurately schedule and execute
time-sensitive instructions, leveraging asynchronous patterns (using async/await, Promises, and event
loop coordination) to ensure precise timing for note playback and other musical actions.

● Tooling and Ecosystem Integration: Utilize TypeScript 5, Vite, and Vitest to modernize the project’s
codebase, ensuring high performance, clear architecture, and smooth developer experience. The revised
engine will also align with Sugar Labs’ UI/UX guidelines for a cohesive experience in the Sugar desktop
environment.

Throughout the project, clear abstractions will be established to support future extensions, allowing plugin
developers to add new syntax elements or musical operations with minimal changes to the core engine. The

6

GSoC 2025 | Sugar Labs

approach not only aims to enhance performance and maintainability but also to provide a solid template for
building similar AST-driven, time-synchronized execution engines.

What will be Achieved:

Upon completion of this project, the following outcomes will be delivered:

● Refined AST-Based Interpreter: A fully functioning in-memory interpreter that effectively handles both
imperative and declarative syntax, specifically optimized for the intricacies of musical programming.

● Robust Scheduling and Concurrency Model: An integrated scheduler supporting concurrent thread
execution and precise time-based scheduling. This ensures multiple musical sequences and time-based
events execute seamlessly without blocking the main event loop.

● Modular, Object-Oriented Architecture: Clean, well-documented, and extensible codebase that
establishes best practices for AST node representations, parser/interpreter separations, and state
management. This architecture will facilitate future enhancements and module reuse in other Sugar Labs
projects.

● Comprehensive Testing and Documentation: A full suite of unit and integration tests using Vitest, along
with detailed developer and user documentation. This ensures reliability for future contributors and
provides guidance for maintaining and extending the engine.

● Performance Optimization: Practical optimizations to minimize overhead in AST traversal, manage state
and scheduling effectively, and ensure the interpreter performs well in resource-constrained
environments (such as the Sugar on XO laptops).

● OSS Engagement and Long-term Sustainability: A clear contribution pathway with documented best
practices and design patterns, allowing the Sugar Labs community to maintain and build upon this work.
This includes guidelines for collaboration, code review processes, and integration with existing Sugar
Labs repositories.

By the end of GSoC, the project will have delivered a polished, production-ready Music Blocks execution engine
that enhances the creative and educational potential of the platform. This engine will not only satisfy immediate
project requirements but also provide a strong, extensible foundation for future developments in music-based
educational programming.

Deliverables:

Here is a proposed modular execution engine architecture for Music Blocks 4, along with implementation
strategies and references to inform each component:

● AST Structure (Tree and Nodes): Use an in-memory AST (Tree) to represent the program’s block
structure github.com . Each block or syntactic element is a node in this tree, with references to child

7

https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=,maintaining%20interconnections%20between%20syntax%20elements

GSoC 2025 | Sugar Labs

nodes (for blocks that contain statements or expressions). The AST can be dynamically updated if the
user edits the program during execution (Sugar Labs might want live coding support), but typically it’s
constructed at program start from the saved project. The architecture already defines an Element API
for syntax elements and a Specification registry of element types github.com. Implementation will
involve defining TypeScript classes or interfaces for all element types (including core ones like Process
and Routine as special block types github.com. Plugins will extend these classes. Each node class will
implement methods needed for execution (e.g., an execute method, and possibly utility methods for the
parser like getChildren()).

Architecture of the Music Blocks Program Engine. The Syntax & AST subgraph (green) represents the static
program structure: a Tree of connected syntax elements, definitions (Specification) of all element types

8

https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=,be%20used%20to%20build%20programs
https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=Monitor%20proxies%20information%20about%20the,execution%20states%20and%20statictics

GSoC 2025 | Sugar Labs

(including plugins), and a Warehouse tracking instances. The Execution Engine subgraph (blue) represents
runtime components: the Parser traverses the AST (with help from Specification/Warehouse to map node IDs to
instances), the Interpreter executes each element’s behavior (interacting with the global state in the Symbol
Table), and the Scheduler manages multiple concurrent execution threads (processes) and timing. The Monitor
observes state and execution events to provide feedback (e.g., for UI highlighting or debugging). This
architecture cleanly separates concerns: modifications to the AST or adding new block types (via plugins) do not
require changes in the core execution logic, and concurrency/timing is handled by the Scheduler component.

● Parser (Execution Orchestrator): The Parser will be responsible for stepping through the AST in the
correct order. It maintains a program counter and call stack github.com. In practice, this means:

○ If a Routine (function) is called, the parser pushes a new frame (saving the return address and
local variable context) and then starts executing the routine’s body.

○ If a loop is encountered, the parser might handle the looping construct (e.g., by looping internally
or by re-inserting the loop body back into the execution sequence multiple times).

○ The parser likely works closely with the Interpreter: it might provide the interpreter with the “next”
element to execute. Alternatively, the parser itself could be integrated into the interpreter’s control
flow (for example, each node’s execute method could internally call the parser for substructure).
We will clarify this by implementing a clear contract: perhaps the parser has a method like
step() that returns the next SyntaxElement to execute (and advances the program counter),
and the interpreter calls step() repeatedly.

○ This separation is reminiscent of how some virtual machines separate the code-fetch stage from
execution. It could help in managing things like breakpoints or single-stepping in the future (the
Monitor could use the parser’s program counter to know where we are).

● Interpreter (Executor): The Interpreter takes elements from the parser and performs the actions. For a
Data/Expression element, it will compute a value (using the current state). For an Instruction
(statement/block), it will carry out the command, which might modify the state or produce output (sound,
etc.). For example:

○ A “Play Note” instruction node, when executed, would call the appropriate sound generation
function (perhaps interfacing with Web Audio or another system) to play the specified note. It
might also interface with the Scheduler to schedule the note’s duration (e.g., schedule stopping
the note after a certain time).

○ A control structure like “Repeat 4 times” (loop) when executed might not directly loop itself, but
instead signal to the parser to repeat a section. Alternatively, the interpreter could implement the
loop by moving the program counter backwards. This design decision will be made during
implementation: a simple approach is to have the interpreter detect loop nodes and handle
looping internally (maintaining a loop counter and using a while loop in the execute method of

9

https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=,elements%20can%20use%20during%20execution

GSoC 2025 | Sugar Labs

that node).

○ The interpreter also interacts with the Symbol Table (State) for variable assignments, lookups,
and maintaining any temporary state needed by elements (for instance, a loop might use the
symbol table to store the current iteration count if it’s a for-loop with a named index).

○ Errors or edge cases (like division by zero in an expression, or an unknown block type) should be
handled gracefully, possibly by throwing exceptions or emitting error events that the Monitor can
catch to inform the user.

● Scheduler (Concurrency Manager): The Scheduler component enables multiple processes to run. In
Music Blocks terms, a Process is an independent thread of execution (like a parallel timeline), and
multiple processes can execute concurrently github.com. The scheduler will manage a list of active
processes and ensure they advance over time:

○ If using a cooperative tick loop, the Scheduler will periodically call the parser/interpreter to
advance each process by a step or a few steps. The Scratch forum description provides a guide:
execute a chunk of blocks in one process, then switch to the next scratcharchive.asun.co
. A chunk might be defined as “run until a yield is needed or the end of a loop iteration”
scratcharchive.asun.co The scheduler needs to handle wait timing: when a process hits a
time-based wait (or a “pause until” event), the scheduler should note the target time or condition,
and suspend that process until the time/condition is reached. For time waits, this could be done
by using setTimeout to mark the process ready at a future time, or by calculating the wake-up
time and checking it each tick. The architecture suggests the scheduler provides an execution
context and manages orchestration github.com, so it likely will own the main loop that drives
execution.

○ If leveraging async/await, the scheduler might be implicit – e.g., launching each process as an
async function (which internally awaits on delays) and leaving it to the JS runtime to interleave.
However, an explicit scheduler loop can give more control (especially for synchronizing processes
on musical beats or for visualizing execution). A hybrid approach might also work: use
async/await for simplicity in coding each process’s logic, but still have a scheduler that initiates
and monitors these async processes (and perhaps uses Promise.race or similar to react when
any process completes a step or needs attention).

○ Thread safety is less of a concern in JS (since it’s single-threaded), but logical conflicts can occur
(e.g., two processes writing the same variable). The interpreter should document that and
possibly avoid global shared state where not necessary, or use locks if truly needed (locks likely
not needed if careful – simpler is to let them interleave arbitrarily as Scratch does, leaving it to the
program logic to avoid races).

● State Manager (Symbol Table): This structure maintains variables, perhaps in multiple scopes. It can be
as simple as a nested dictionary (e.g., a stack of scope objects for each call/process). Provide methods:
declare(name, value, scope) for creating a new variable (or setting initial state), get(name) and

10

https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=There%20are%202%20special%20constructs%3A,multiple%20processes%20can%20run%20concurrently
https://scratcharchive.asun.co/forums/viewtopic.php?id=8130#:~:text=Scratch%20simulates%20concurrency%20%28i,some%20other%20version%20of%20Scratch
https://scratcharchive.asun.co/forums/viewtopic.php?id=8130#:~:text=How%20many%20blocks%20does%20Scratch,how%20we%20think%20about%20program
https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=,the%20parser%20and%20executes%20them

GSoC 2025 | Sugar Labs

set(name, value) to retrieve/update. If music blocks allows dynamic creation of variables or property
lists (like lists of notes), the symbol table should accommodate that (maybe storing complex objects).
Additionally, the symbol table might keep special states: e.g., current tempo, current octave, etc., that
instructions might query or set. The architecture also mentions “states” and “queries” between Symbol
Table and other components github.com – possibly meaning that elements can query the symbol table
for current state (like the state of a toggle, or sensor input if any).

● Monitor and Feedback: While not the core of execution, it’s worth noting that a Monitor is planned to
track execution state and statistics github.com. This could be implemented by emitting events from the
interpreter (e.g., “NoteOn”, “NoteOff”, “LoopStart”, “LoopEnd”, “ProcessFinished” events). The Monitor can
listen and update the UI (like highlighting the current block, or showing a visual indicator of threads).
Designing the interpreter with hooks (using an event emitter or callbacks) will make it easier to integrate
debugging and visualization tools, which are important in educational software. For instance, each time a
block is executed, the interpreter could call monitor.blockExecuted(blockId) to allow the
front-end to highlight that block.

● Reference Implementations: This architecture aligns with patterns seen in Scratch VM and others:

○ Scratch’s Threading Model – each script corresponds to a thread managed by a scheduler
groups.google.com.

○ Concurrency in Co (a toy language with coroutines): that interpreter captured continuations at
yield points and scheduled them, effectively splitting execution across multiple tasks
abhinavsarkar.net abhinavsarkar.net. Music Blocks can follow a similar approach using either
explicit continuation objects or by structuring code with async/await to naturally yield.

○ ChucK and Sonic Pi – emphasize scheduling and accurate timing, which justify having a
dedicated scheduler and possibly an internal clock to coordinate events.

○ Any time-based AST execution (such as game scripting engines) often have a main loop that
updates each script each frame – a similar pattern will serve Music Blocks well for updating
musical timelines.

● Performance Considerations: With the above architecture, we should also plan for optimizations:

○ If many blocks are no-ops (e.g., data blocks just returning values), the overhead of visiting them
could add up. Caching constant values or folding constant expressions when loading the AST can
reduce runtime work.

○ The use of Web Workers could be explored for heavy tasks, but likely the engine will run fast
enough in the main thread given typical program sizes. We can mention that for extreme cases
(like generating audio waveforms or handling large data sets), a worker could offload the work to
prevent UI jank medium.com.

11

https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=Execution
https://github.com/sugarlabs/musicblocks-v4-lib#:~:text=,orchestration%20of%20the%20execution%20process
https://groups.google.com/g/blockly/c/qu52jQ5rTf4/m/gPYbiU82CgAJ#:~:text=The%20VM%20itself%20keeps%20track,that%20take%20time%2C%20like%20glide
https://abhinavsarkar.net/posts/implementing-co-3/#:~:text=The%20,next%20coroutine%20in%20the%20queue
https://abhinavsarkar.net/posts/implementing-co-3/#:~:text=As%20we%20see%2C%20the%20numbers,call
https://medium.com/@mallikarjunpasupuleti/concurrency-models-in-javascript-a-deep-dive-into-web-workers-and-service-workers-e8b013dd244b#:~:text=execute%20one%20piece%20of%20code,without%20freezing%20the%20main%20thread

GSoC 2025 | Sugar Labs

○ Use profiling tools in Chrome/Node to find bottlenecks once the engine is running, and address
them (e.g., if the dynamic dispatch on node types is slow, consider switching to a lookup table of
functions by opcode).

○ Garbage generation should be minimized in the inner loop of execution. For example, the
scheduler can maintain a pool of “thread” objects instead of recreating them for each cycle.

The outcome of this architecture will be a robust execution engine that can parse Music Blocks programs and
execute them with correct semantics, including support for concurrent processes and precise musical timing. It
will be extensible (new block types via plugins), debuggable (with monitor hooks), and maintainable due to clear
separation of components.

Proposed Timeline:

The project is planned for the GSoC 2025 timeline (350-hour project). Below is a week-by-week breakdown,
including the community bonding period, planning, development milestones for each activity, testing phases,
progressive development milestones for key components, integration and testing phases, and dedicated time for
code polishing and comprehensive documentation. The timeline is tentative and may be adjusted in consultation
with mentors, but it demonstrates a clear iterative approach: a basic version will be implemented early, then
refined through multiple iterations to add robust features, comprehensive testing, and performance
optimizations before the final evaluation.

Timeline Activity Key Tasks / Deliverables

Community
Bonding
(May 8 – May
28)

Community Engagement &
Setup

Community Engagement & Environment Setup
 - Set up development environment: configure
Sugar desktop, sugar-toolkit, and necessary
TypeScript libraries

 - Familiarize with the existing Music Blocks‑v4
codebase

- Discuss initial design ideas, review current
documentation, and finalize execution engine
specifications with mentor input
- Draft preliminary UI/UX and system diagrams (using
Mermaid.js)
- Plan testing strategies and collect necessary assets

Week 1
(May 29 – June
4)

AST Design and Specification - Define data structures for AST nodes using a class
hierarchy and/or discriminated unions in TypeScript
- Establish the Specification registry for syntax elements
(including plugins)
- Create UML/Mermaid diagrams for the AST
architecture

12

GSoC 2025 | Sugar Labs

- Validate design through mentor review and discussion

Week 2
(June 5 – June
11)

Basic Parser Implementation - Develop the initial parser to convert Music Blocks
programs into an in-memory AST
- Integrate AST node definitions and basic error handling
- Write unit tests to verify accurate AST generation
- Document parsing decisions and initial challenges

Week 3
(June 12 – June
18)

Interpreter Core
Implementation

- Implement the execution engine that traverses the AST
and executes node-specific behaviors
- Establish support for imperative constructs (loops,
conditionals, and simple function calls)
- Write unit tests for early-stage execution scenarios

Week 4
(June 19 – June
25)

State Management &
Scheduler Introduction

- Develop a state manager (symbol table) to handle
program variables and global musical parameters (e.g.,
tempo)
- Introduce an initial scheduler using async/await to
manage time-based instructions
- Create unit tests to ensure reliable state tracking and
basic scheduling

Week 5
(June 26 – July
2)

Time-Based Instruction
Handling

- Enhance the interpreter to support time-scheduled
(delay/wait) instructions
- Integrate these with the scheduler to yield control and
resume execution precisely
- Validate timing accuracy with both manual and
automated tests

Week 6
(July 3 – July 9)

Concurrency and
Multi-Thread Execution

- Extend the scheduler to manage multiple concurrent
execution threads (simulated processes)
- Implement cooperative multitasking to allow
simultaneous musical sequences
- Introduce synchronization primitives (e.g., “broadcast
and wait”) and test concurrent scenarios

Week 7
(July 10 – July
16)

Optimizations and Advanced
Features (Part 1)

- Profile the interpreter and scheduler to identify
performance bottlenecks
- Optimize AST traversal (e.g., caching or iterative loops
in place of recursion)
- Refine state management for improved runtime
efficiency
- Update unit tests for performance improvements

Week 8
(July 17 – July
23)

Advanced Features and
Extensibility (Part 2)

- Enhance support for declarative constructs alongside
imperative execution
- Refine object‑oriented design and plugin system to
easily extend functionality with new block types
- Incorporate mentor feedback for additional features
and improvements

13

GSoC 2025 | Sugar Labs

Week 9
(July 24 – July
30)

Comprehensive Integration
Testing

- Integrate the parser, interpreter, and scheduler into a
cohesive execution engine
- Run full-scale tests using complete Music Blocks
programs
- Validate concurrency and timing through
scenario-based integration tests
- Address integration bugs and refine error handling

Week 10
(July 31 – Aug
6)

Documentation and Code
Refinement

- Develop complete technical documentation covering
the design, API, and user guide for the execution engine
- Draft developer guides and detailed diagrams (using
Mermaid.js)
- Enhance inline code comments and prepare design
rationales for future maintainers

Week 11
(Aug 7 – Aug
13)

Final Polishing, Mentor
Review, and Buffer

- Incorporate final mentor feedback and perform
extensive code refactoring
- Conduct thorough end-to-end testing (unit and
integration tests)
- Optimize performance further and address any
remaining issues
- Prepare demonstration materials and final report

Week 12
(Aug 14 – Aug
21)

Submissions and Wrap-Up - Finalize code base, documentation, and demo videos
- Merge final code into Sugar Labs repositories
- Complete final testing and quality assurance
- Submit final project deliverables and evaluations

Availability
I am committed to contributing approximately 40 to 50 hours per week to the project.. I will ensure consistent
participation and focused work throughout the program to achieve all project goals and deadlines effectively.The
GSoC timeline aligns well with my university’s summer break, giving me ample uninterrupted time to focus on
the project. Even after the break ends, I will have no exams or in-person classes, and all academic commitments
will be asynchronous, allowing me to continue contributing actively.

My typical working hours are from 10:00 IST (4:30 UTC) to 1:00 IST (19:30 UTC), during which I will be fully
available and responsive. In case of any unforeseen circumstances requiring time off, I will promptly inform my
mentors in advance.

Post GSoC Plans
After GSoC, I plan to remain an active contributor to Sugar Labs and continue refining the Music Blocks 4
Program Engine. Building on the progress made during the project, I intend to extend the engine’s capabilities by
exploring additional optimizations, integrating new block types, and enhancing concurrency and scheduling
techniques. In particular, I aim to mentor new contributors who take on similar challenges, assist with code

14

GSoC 2025 | Sugar Labs

reviews, and guide future design enhancements as feedback is received from the community. I also plan to share
insights and experiences through blog posts, community meetings, and technical talks—helping to disseminate
best practices in building educational programming tools that combine music and interactive learning. This
continued involvement will not only maintain the engine’s evolution but also foster a vibrant, collaborative
development culture within Sugar Labs.

Conclusion
The Music Blocks 4 Program Engine project is much more than an exercise in refining a codebase—it is an
opportunity to empower creative learning by blending the art of music with the logic of programming. With this
project, we are set to build a robust, in-memory AST interpreter that supports both time-based instructions and
concurrent execution, ultimately enhancing the interactive experiences that define Sugar Labs' educational
ecosystem.

My background in TypeScript development, object-oriented design, and contributions to Sugar Labs has provided
me with a strong foundation to tackle this complex challenge. By applying modern software engineering
practices and embracing a collaborative, iterative development approach, this project promises to deliver a
production-ready engine that is not only high-performing and extensible but also accessible to young learners
and educators alike.

I am deeply motivated to bring this vision to life. Through structured development, thoughtful integration of
advanced scheduling techniques, and comprehensive testing, the Music Blocks 4 Program Engine will become a
cornerstone for innovative music programming. I look forward to collaborating with mentors and the Sugar Labs
community, ensuring that this project remains a valuable asset that inspires creativity and interactive learning for
children around the world.

15

	Music Blocks 4 Program Engine
	Basic Information
	Project Details
	
	Personal Details
	

