

Project Info:

Title: Pippy Debugger

Project Length
175 hours

Di�culty
Medium

Coding Mentors
Walter Bender Ibiam Chihurumnaya Kshitij Shah

https://github.com/walterbender/
https://github.com/walterbender/
https://github.com/chimosky/
https://github.com/chimosky/
https://github.com/kshitijdshah99/
https://github.com/kshitijdshah99/

Applicant Info:

Name: Ahmad Abdul Rehman

Email: ahmadtarqx2003@gmail.com

Github: https://github.com/ahmadtariq1

Kaggle: https://www.kaggle.com/ahmadtariq1

First Language: Urdu

Location: Pakistan

Timezone: (UTC + 05:00)

University: FAST NUCES LHR

Program: Bachelors in Computer Science

About me

Contributions and Past Projects
I will be adding this shortly.

Pippy Debugger: LLM-powered Debugging
Assistant for Pippy Activity

Problem Statement

“Many LLM programs for coding are almost exclusively marketed as "helping you write code

for you". However, we believe that LLMs can also assist learners to debug their code. This

project proposal is to create an LLM-powered debugger for Pippy, the Sugar Activity for

creating code in Python.

The proposed Pippy Debugger integrates with the existing Pippy Activity. The LLM-powered

debugger should be able to read a learner's code and o�er suggestions for improvement

when prompted. It should also help engage the learning in a conversation about how to

discover where to look to find bugs and how to think about resolving them -- in other words,

take the learning on a debugging journey as opposed to just spoon-feeding a solution. And

mailto:ahmadtarqx2003@gmail.com
mailto:ahmadtarqx2003@gmail.com
https://github.com/ahmadtariq1
https://github.com/ahmadtariq1

1.
2.
3.
4.
5.

since we work with youth, we need to make sure that the debugger's output is age-

appropriate. The Pippy interface will also be updated to expose the new feature to a user”

Project Overview

The Pippy Debugger project aims to create an innovative LLM-powered debugging assistant integrated

with Pippy, the Sugar Activity for Python programming. Unlike conventional LLM coding tools that

focus primarily on code generation, this debugger will emphasize educational debugging experiences,

helping learners identify and fix errors while developing critical problem-solving skills. The system will

guide students through the debugging process rather than simply providing solutions, making it an

e�ective learning tool for Sugar's educational environment.

Impact on Sugar Labs

This project will significantly enhance Sugar Labs' educational toolkit by:

Providing an accessible debugging assistant that supports learning-by-doing
Making programming more approachable for young learners by reducing frustration with bugs
Teaching systematic debugging methodologies
Enabling more independent exploration and problem-solving
Demonstrating innovative applications of AI in educational contexts

Technologies

Python: Core programming language for development
FastAPI: For building the debugging API service(tentative)
Llama-3.1-8B: Primary LLM model for debugging assistance
Docker: For containerization and deployment consistency
AWS: For hosting the model and API
Sugar Activity Framework: For integration with the Pippy environment

Project Breakdown

1. Model Selection and Evaluation

Why Llama-3.1-8B? I tested multiple models including CodeLlama, CodeJemma, and few others, but

Llama-3.1-8B worked the best for our debugging assistant. The other models had problems

understanding logical errors, but Llama-3.1-8B had no issues understanding context and identifying

errors(to my current testing). I've attached images showing sample debugging sessions with the model

that demonstrates good ability to identify problems and explain them in a way that's helpful for young

learners.

Code Response

Note:

These samples are shown here to prove that the model is su�ciently capable of understanding
logical errors.
This is not to shown to demonstrate how debugger would respond in our project.
It was also said in the matrix chat that sugar devs have tested llama the most.

It has been verified in depth that this model has no problem with identifying lexical, syntax and
semantic errors. This was tested because some small models do actually fail occasionally in
finding semantic errors.

Llama-3.1-8B Specifications:

Provider: Meta

License: Open source
Context Window: 128k tokens
Size: 8B
Key Benchmarks:

Reasoning (MMLU): 73%
Coding (HumanEval): 72.6%
Advanced Coding (EvalPlus): 72.8%
Math Word Problems (GSM8K): 80.5%
Instruction Following (IF-Eval): 87.5%

The model is good at coding tasks (72.6% on HumanEval) which proves that it can be a good debugger

tool.

2. Prompt Engineering and Testing

Refining Prompt:
Adding Details for Relevance
Adopting a Role for Expertise(highly useful)
Specifying Steps for Clarity
Providing Examples(few-shot prompting)

Work on creating specialized prompts that:
Use age-appropriate explanations for di�erent learning levels
Focus on guiding instead of just giving direct answers
Teach good debugging methods

Test everything thoroughly by:
Preparing most common codes dataset
Testing on extreme variation of code
Comparing results with top models like Claude and Gemini 2.5
Testing with lots of di�erent common programming errors

Output Expectations of Debugger

Code Debugger Response

3. Two-Phase Debugging Architecture

Phase 1: Guided Debugging

Help learners find problem areas through guiding questions
Give hints without direct solutions
Teach systematic debugging approaches

Verify Code Elements
Check Structure

Confirm Data Fit
Test with Examples
Trace Logic

Make students think critically about how their code works
The current output terminal displays errors in a very beginner friendly manner
Taking advantage of this, the debugger will try to relate error with debugging approach, e.g in case
of NameError-->verify code elements

Phase 2: Active Assistance

“Active Assistance" starts after you try guided debugging once (tentative), steps in if you’re totally
lost, and helps in debugging with more ease, making the project cooler.

Marking specific lines that might have errors with arrows
Suggest where to add print statements to see variable values
Recommend debugging strategies like:

Adding print statements in strategic places(such as before and after if-else conditions)
Checking variable values
Tracing how the program flows
Checking variable types

An image is attached which gives an idea of how it would look like

Important note:
We’ll not be implementing a debugger chat bot due to the following reasons:

It can distract students with side conversations.
It might give direct solutions instead of guiding.
Responses may not always be age-appropriate.
It’s hard to control what the LLM says in an open-ended chat format.
It could overwhelm young learners with too much text.
It’s harder to keep the experience focused and on-task.

Debugger Flow Methodology

1.
2.
3.
4.

1.
2.
3.
4.

5.
6.
7.

Goal statement is optional but this could really help in solving problems where there is no error but

the code is not giving its intended output.

A simple example :

for i in range(1,5):

 print("Hello Sugar")

output:

Hello World

Hello World

Hello World

Hello World

This code prints 4 times, but the coder intended it to print 5 times. This kind of intention or

requirement is impossible for an LLM to detect on its own. To address this, we'll add a feature where

users can specify their goal as context. This way, the debugger will have the necessary information

about what the code is supposed to do and can provide more helpful assistance.

4. UI Integration with Pippy

I've designed a sample debugging interface for Pippy and attached sample UI mockup showing
how it could look. The interface includes:

A debugging toolbar with two di�erent debugging modes
Visual indicators for problematic code
A chat interface for debugging conversations
A system for marking lines that might have errors

How students will use it:
Student gets an error in Pippy
Clicks the Phase 1 icon (guidance mode).
Is provided debugging help by the debugger about the problem in a conversational tone
It is important to note that we'll not be implementing a chatbot because that takes away the
key point of student learning. Students might ask it indirectly about the exact solution, and
often when we let models operate in an open-ended way, they can hallucinate and produce
messages that aren't age-appropriate.Instead, our approach will be more structured and
focused specifically on debugging guidance. The two-phase system will provide targeted
support within the specific context of the student's code, rather than allowing free-form
questions that might let them bypass the learning process
If needed, clicks the Phase 2 icon (active assistance) for specific help
Tries the suggestions and learns debugging methods
Print statement shown in important places similar to the style of how pycharm/colab displays
in assisted coding mode. I am aware that this feature is di�cult but this would make the
activity look really refined.

1.

--> Debugger Button

Print Statement is not actually written but displayed

Line marked with arrow to indicate potential bug: (optional) because it is similar to providing the
exact solution

Another style of displaying icons matching the current style tone:

5. Static and Dynamic Analysis Integration

I'll implement static code analysis to find:
Syntax errors
Common mistake patterns
Style issues that could cause problems

I'll also add dynamic analysis if static analysis isn't enough:(Most probably not needed for our
debugging scope)

Trace how the code executes
Monitor variable values
Find runtime problems
Send this information to the LLM for better context

6. API Development with FastAPI

Endpoint Design:
Create API endpoints for the debugger
Make endpoints for code analysis
Design a system to manage conversations
Make sure communication between Pippy and the backend is secure

Backend Integration:
Connect the Llama-3.1-8B model
Build the debugging logic into the API
Create ways to report and analyze errors

Performance Optimization:
Cache responses for common errors so it's faster
Make the model run as quickly as possible
Create e�cient code analysis
Find the right balance between local processing and using the LLM

7. Deployment Architecture

Cloud Deployment (AWS):
Set up the model on AWS
Make sure API access is secure
Add monitoring and logging
Making it as inexpensive as possible
Make it automatically scale based on usage

Note: I realized local deployment isn't feasible for this project because the model needs more

resources than what will be available on xo laptops and typical local machines, especially considering

the hardware constraints of the environments where Sugar is commonly used.

8. Documentation and Educational Resources

I'll create thorough documentation:
How to install and set up everything
API documentation
Usage examples and tutorials
Guides on debugging methods

I'll also make educational resources:
Tutorial video of how to use the debugger (for teachers and parents reference)
Best practices for teaching with the tool

Timeline for the Project

(May 8 - September 1, 2025)

“Hofstadter's Law: It takes longer than you expect, even when you take into account Hofstadter's Law”

Time Period Details

May 8 - May 18 (total time: 16 hours)

(Bonding and Recky period)

Connect with mentors (Walter Bender,

Ibiam Chihurumnaya, Kshitij Shah) to

discuss project scope. Read Sugar Labs

and Pippy documentation to further

understand the environment. Run initial

tests with Llama-3.1-8B and gathering code

samples for testing dataset.

May 18 - June 2 (total time: 16 hours)

Semester Final Exams

Designing complete documention of model

system flow, and discussing it with mentor.

June 3 - June 7 (total time:10 hours)
Exams Ongoing

Finalizing the design of frontend interface.

June 8 - June 15 (total time 25 hours)

Semester ends here, fully available for
GSOC 😎

Initially running model locally(yes my

system is capable of that) and then testing

Llama-3.1-8B with a variety of code

samples (simple loops, logic errors, etc.) to

verify its capability hold up for debugging.

Compare it against the best models out by

then to confirm that it outperforms them

in understanding logical errors and

context(debugging), as noted in our tests.

Start prompt engineering/Refining:

aforementioned in detail.

June 16 - June 23 (total time 25 hours) Implementing debugger_flow method,

mentioned above.Creating testing dataset,

then perform edge case testing.Evaluation

of results and refining.

June 24-June 29 (total time 25 hours) Implementing two phased structure:

Debugging Guide

Active Assistance

Code for debugger model should be
complete by now!

June 30 - July 6 (total time 25 hours) Developing API using FastAPI,Integrate

1.

Llama-3.1-8B into the API.Test the API with

simple sugar activity by submitting sample

code and checking response

speed/accuracy. At this moment, we’ll not

be implementing proper interface for

debugger.

July 7 - July 18 (total time 35 hours) Prepare a working prototype (debugging

logic + API) for the midterm evaluation

(July 14-18, submit by July 18, 18:00 UTC).

Incorporate mentor feedback post-

midterm to refine the system.

Midterm Evaluations!😅

July 19 - August 3 (total time 25 hours) Complete Debugger interface coding
Integrating it with pippy activity
Testing for bugs.

Aug 4 - Aug 11 (total time 25 hours) Deployment Phase

Aug 12 - Aug 19 (total time 25 hours) Detailed Feedback with mentors, refining

based on feedback

Aug 19- Sep 1 (total time 25 hours)

Semester Restarts!

Final Run!

Package the project: bundle code, docs,

and resources into a clear submission.

Write a final report summarizing the work

(two-phase system, UI integration,

educational impact). Address any last-

minute mentor feedback and ensure

everything aligns with Sugar Labs’ goals.

Prepare for mentor final evaluations.

The time mentioned indicates the maximum time I’ll be able to provide in the respective time

period.

Expectations

A working LLM-powered debugging assistant integrated with Pippy

2.
3.
4.
5.

A two-phase debugging approach that focuses on learning
An improved Pippy interface with debugging features
Good documentation for users and developers
Educational resources for teaching debugging

I'm really excited about this project because it's not just about making a tool that fixes code, but one

that teaches students how to debug their way out and learn to look at their code with a debugger’s

view. By focusing on guidance rather than just giving solutions, the Pippy Debugger will help Sugar

Labs' educational mission while giving practical programming help to students worldwide.

Sidenote: Many experts think there will be a big need for people who are good at debugging, because

AI is creating complicated code that often needs human help to work properly.(pretty ironic)

Post Gsoc Plans

I've been interested in SugarLabs for over a year, but setting up the development

environment used to be super hard for me. The only code changes I could make without

getting "failed to start" errors were just print statements 😐. I really like the concept of small

specific activities because as an open source contributor, big projects can feel overwhelming,

but coding complete activities gives you motivation and freedom to work on what interests

you. Since I recently took an AI course, I'm excited about creating activities with cool

algorithms like a 2x2 Rubik's cube solver. I've already talked about this with Sugar developers

in the mailing list. Another activity I'd love to make would be to implement minimax for tic-

tac-toe. These algorithms are perfect for basic activities like these.

Final Note:

A lot of the proposal details are up for discussion with the mentor, including model selection,

user interface design, and deployment strategy. This document mainly aims to show a

thorough understanding of the project and current best implementation approaches. More

subjective elements like the interface design will be finalized at a later stage.

