

 Proposal - Google Summer of Code 2025

 Personal Details

● Name - Sarvesh Charpe
● Link to Github
● Link to Linkedin
● College - National Institute of Technology, Warangal (India)
● Country of Residence - India
● Telephone - +91 8999018653
● Timezone - IST (India)
● Language - English
● Gmail: sarveshcharpe27@gmail.com
● Preferred Communication Method - Email, Video Conferencing,

Call, Discord, Slack.
● Typical Working Hours - 11:30 - 13:30, 15:00 - 19:00, 22:00 - 3:00

(IST)
 2:00 AM – 4:00 AM, 5:30 AM – 9:30 AM, 12:30 PM – 5:30 PM (UTC)

Why SugarLabs ?
Sugar Labs’ mission to provide equitable access to education resonates
deeply with my values. I’m drawn to the opportunity to directly enhance the
platform's accessibility for users worldwide. Having already contributed to a
number of merged pull requests to Music Blocks (#4248, #4391,#4447 and

https://github.com/Sarvesh2783
https://www.linkedin.com/in/sarvesh-charpe-486076286/
https://github.com/sugarlabs/musicblocks/pull/4248
https://github.com/sugarlabs/musicblocks/pull/4391
https://github.com/sugarlabs/musicblocks/pull/4447

more) related to internalisation of Sugarlabs and actively engaging with the
community, I understand the codebase and I’m eager to tackle the
challenges of its current internationalization system.

 Previous Contributions to Sugarlabs

● #4248 (merged) - Enhancing Accessibility: Complete French
Language Integration for Sugar Labs UI.

● #4391 (merged) - Bridging Language Barriers: Full Marathi Support in
Sugar Labs Interface.

● #4447 (merged) - Expanding Horizons: Hindi Language
Implementation for Sugar Labs Platform.

● #4220 (completed) - Resolution of Japanese Language Loading
Screen Inconsistencies.

● #4292 (completed) - Optimizing Front-End Initialization: Eliminating
Reference Errors in JavaScript Frameworks.

Contributions to AsyncApi

● #3446 (open) - Performance Enhancement in Markdown Processing:
Limiting Concurrent Tasks

 Project Proposal

Project Title
JS Internationalization with AI Translation Support.

Overview

Sugar Labs applications aim to provide equitable access to education
globally. However, their current internationalization (i18n) implementation
hinders this goal. The interface relies heavily on manually-created
translations, which are often inconsistent and lead to translation gaps. The

https://github.com/sugarlabs/musicblocks/pull/4248
https://github.com/sugarlabs/musicblocks/pull/4391
https://github.com/sugarlabs/musicblocks/pull/4447
https://github.com/sugarlabs/musicblocks/issues/4220
https://github.com/sugarlabs/musicblocks/issues/4292
https://github.com/asyncapi/website/pull/3446

static nature of these translations also creates maintenance difficulties,
making it hard to keep pace with new features and language requirements.

Why is this a problem?

These limitations create significant barriers for non-English speakers,
negatively impacting accessibility and user experience. Users frequently
encounter untranslated elements, reducing their ability to navigate and
utilize the platform effectively. Further, the existing webL10n.js framework
lacks modern features needed for more complex language support and
streamlined workflows. A better solution is needed to provide a truly global
and inclusive learning experience.

Proposed Solution

To address the limitations of Sugar Labs' current internationalization
approach, my project aims to develop a modern, AI-enhanced translation
framework. I propose implementing a system that leverages machine
translation APIs (such as Google Translate or DeepL) and the i18next
library to dynamically render content in multiple languages, significantly
reducing the manual translation burden and enhancing the user
experience.

Key Elements of the Solution:
1. Migration to i18next: Replace the outdated webL10n.js with the

modern i18next framework, which offers robust support for
pluralization, ICU syntax, dynamic translation loading, and a modular
architecture for extensibility.

2. AI-Powered Translation Workflow: Create an automated pipeline to
generate initial translations using AI translation services. This
involves fetching untranslated strings, sending them to the AI service
for translation, and storing the results in PO files (which are

compatible with i18next) for review and refinement by human
translators.

3. Community-Driven Translation Refinement: Implement a UI tool
that allows community translators to easily review and edit the
AI-generated translations, ensuring accuracy, cultural relevance, and
consistency across the platform.

4. Dynamic Language Switching: Develop a feature that allows users
to instantly switch between languages without requiring a page reload
or application restart.

5. Fallback Mechanisms: Implement fallback strategies to ensure that
if a translation is missing for a specific string, the application
gracefully falls back to a default language (e.g., English) to prevent
broken UI elements.

Expected Benefits:

● Reduced Manual Translation Effort: Automate the initial translation
process, freeing up human translators to focus on refinement and
ensuring quality.

● Faster Translation Turnaround: Quickly support new languages as
Sugar Labs expands globally.

● Improved Translation Quality and Consistency: Community-driven
refinement of AI-generated translations ensures accuracy and cultural
appropriateness.

● Enhanced User Experience: Dynamic language switching and
complete translation coverage provide a seamless experience for
users worldwide.

● Modern and Scalable i18n Framework: Migrate to i18next, ensuring
compatibility with modern JavaScript standards and providing a solid
foundation for future i18n enhancements.
This proposed solution aligns with modern software development
practices and would make Sugar Labs more accessible and easier to
maintain.

Driven by a passion for accessible education, I bring to this project strong
capabilities in JavaScript, web development, and language localization. My

previous contributions to Sugar Labs, including #4248, #4391, #4447, have
provided valuable insights into the platform's i18n challenges. I'm motivated
to apply my skills through GSoC to create an intelligent, efficient translation
system that enhances Sugar Labs' global accessibility.

Previous Projects around Collaboration

 1. Multi-Language Blog Platform
As a personal project, I developed a Multi-Language Blog Platform, a web
application designed to provide a seamless blogging experience for users
in multiple languages. This project directly addresses many of the same
internationalization challenges that Sugar Labs currently faces. link

● Key Features:
● Dynamic Language Switching: Users can instantly toggle

between languages (e.g., English, French) without page
reloads, providing a smooth and intuitive user experience.

● Modular Translation Management: Translations are stored in
easily maintainable JSON files, allowing for scalability and ease
of updates.

● Fallback Mechanism: A robust fallback system ensures that if
a translation is missing for a specific string, the application
gracefully defaults to English, preventing broken UI elements.

● Real-Time Content Rendering: Blog posts and UI elements
are dynamically updated based on the selected language,
providing a fully localized experience.

● Technical Implementation:
● i18next Integration: The project leverages i18next for

managing translations, locale switching, and pluralization rules,
demonstrating my proficiency with this industry-standard i18n
library.

● Intl API Utilization: The Intl API is used for formatting dates,
numbers, and currencies according to the user's locale,
ensuring a culturally appropriate user experience.

https://github.com/sugarlabs/musicblocks/pull/4248
https://github.com/sugarlabs/musicblocks/pull/4391
https://github.com/sugarlabs/musicblocks/pull/4447
https://github.com/Sarvesh2783/Multi-Language-Blog-platform

● Modular Design: The application features a modular
architecture, making it easy to add new languages, update
existing translations, and maintain the codebase over time.

● Relevance to Sugar Labs:

This project demonstrates my ability to design and implement a robust i18n
system that addresses many of the same challenges that Sugar Labs
currently faces. I have chosen i18next because I know what will be needed.
By migrating the current translation over to this structure system there will
not be anymore issue.

 2. International Weather App
To further explore my interest in creating accessible software, I then
developed the International Weather App is designed to provide localized
weather information to users worldwide. link

● Key Features:
● Localized Weather Information: Displays city-specific weather

data formatted according to the user's language and region
showing temperature units, date/time formats, providing a
culturally relevant user experience.

● Dynamic Locale Switching: Allows users to switch between
languages like English and French without requiring a page
reload, enabling them to view weather information in their
preferred language.

● Error Handling: Provides user-friendly error messages in the
user's selected language, helping them troubleshoot issues and
use the application effectively.

● Technical Implementation:
● OpenWeatherMap API Integration: Leverages the

OpenWeatherMap API to retrieve real-time weather data,
demonstrating my ability to work with external APIs and handle
asynchronous data.

● i18next for Dynamic UI Updates: Utilizes i18next to
dynamically update UI elements based on the user's selected

https://github.com/Sarvesh2783/International-Weather-app

language, providing a seamless and responsive user
experience.

● Intl API for Locale-Aware Formatting: Employs the Intl API
for proper formatting of dates, numbers, and currencies,
ensuring that the weather information is displayed according to
the user's cultural conventions.

● Relevance to Sugar Labs:

This project demonstrates my ability to integrate external APIs with
internationalization techniques, handle asynchronous data, and create
user-friendly applications that cater to diverse audiences. And by using
i18next, I know all the best ways to ensure SugarLabs can be fully
operational and loaded with translations of different languages.

 Technical Details

Migration Strategy: WebL10n to i18next v23
This migration strategy outlines a comprehensive approach to transitioning
from the outdated WebL10n localization framework to the modern i18next
v23 library. The goal is to leverage advanced internationalization (i18n)
patterns and AI-assisted localization to enhance the localization process,
improve performance, and provide a better developer experience.

1. Core Infrastructure Overhaul
a. Translation Service Migration

● Automated Conversion: A custom CLI tool (npx migrate-webl10n)
converts PO files to namespaced JSON at 5x manual speed using
parallel processing.

○ Edge-Case Handling: Script skips malformed PO entries, logs
errors, and preserves metadata (e.g., timestamps, contributor
IDs).

○ Validation: Post-conversion checks ensure JSON integrity with
schema validation.

● Key Normalization:
Text-based keys (e.g., "The Semi-tone transposition block...")
restructured into hierarchical format:

○ Uses NLP-based key generation to auto-categorize strings by
context.

● Fallback Mapping:
Regional chains (e.g., Bengali → Hindi → English) configured via
i18next’s fallbackLng and weighed by linguistic similarity:

b. Runtime Integration

● i18next Configuration: Set up the i18next configuration in
next-i18next.config.js as follows:

This configuration implements granular fallback resolution with three-level
cascading, ensuring robust language support.

2. Advanced Japanese Localization

● Unified JSON Structure: Consolidate Kana and Kanji translations into
a single JSON file (ja.json), which simplifies maintenance and
reduces file size by 50%. The structure will look like this:

● Dynamic Variant Resolution: Use i18next-locize-backend for dynamic

resolution of script variants, allowing for automatic fallback from Kana
to Kanji and then to English.

3. RTL & Interpolation Engine

● Context-Aware String Handling:
○ Replaces concatenation with ICU-formatted interpolation

● Automatic RTL Detection:
● CSS-in-JS direction injection:

● Applies dir="auto" to root elements and uses Intl.Locale API for
script detection.

4. AI-Powered Translation Pipeline

● Extract Strings: i18next-parser scans codebase, outputs
translation.json.

● Machine Translation:
○ Missing phrases sent to Google Translate/DeepL APIs.
○ Batch processing with rate-limiting to avoid API throttling.

● GPT-4 Quality Check:

● CI/CD Deployment:
GitHub Actions auto-commits validated translations to main,
triggering zero-downtime updates via i18next’s reloadResources.

5. Performance Optimization

● Bundle Analysis: Analyze and optimize bundle sizes, achieving
significant reductions:

Implementation:

● Tree-Shaking: i18next-resources-to-backend removes unused
locales.

● Chunked Loading: Non-critical languages loaded on-demand.
● Memoization: Cache frequent translation calls with Lodash’s

memoize.

6. Developer Experience

● CLI Toolchain:
● i18next-migrate validate: Checks for missing keys/placeholders.
● i18next-migrate sync: Pulls latest translations from Locize.

● VS Code Integration:
● Real-time key validation via i18next Ally.
● Inline previews with hover tooltips.

7. Migration Phases
The migration will be executed in four phases over a span of twelve weeks:

Phase 1: Core Setup (Weeks 1-3)

● Implement the i18next framework to replace WebL10n.
● Set up the basic infrastructure for internationalization, including

fallback chains and key normalization.
● Create an automated JSON pipeline to convert existing PO files into

a structured namespaced format.
● Configure i18next runtime settings, including granular fallback

resolution and dynamic language loading.

Phase 2: Advanced Features (Weeks 4-6)

● Develop script-aware resolution for Japanese localization,
consolidating Kana and Kanji translations into a unified JSON
structure.

● Implement an RTL layout engine to ensure proper text direction and
layout for languages like Arabic.

● Enhance string handling by replacing concatenation with interpolation
to support context-aware translations.

Phase 3: Performance Optimization (Weeks 7-9)

● Benchmark current performance metrics (e.g., bundle size, load
times, memory usage).

● Optimize performance using techniques like tree-shaking, lazy
loading for non-critical languages, and memoization of translation
calls.

● Build developer tools such as CLI commands for validating and
syncing translations.

Phase 4: Rollout and Finalization (Weeks 10-12)

● Gradually release the new system using feature flags to ensure a
smooth transition without disrupting users.

● Conduct thorough testing of the AI-powered translation pipeline,
including quality checks using GPT-4.

● Finalize performance tuning, resolve edge cases, and integrate all
translations into the system.

● Prepare comprehensive documentation, FAQs, and a Wiki for future
maintenance.

8. Innovation Highlights
This migration strategy introduces several innovative features:

● Hybrid Fallback:
○ Combines regional chains + GPT-4 suggestions when no

human translation exists.

● Zero-Downtime Updates:
WebSocket-based hot-reloading using i18next-chained-backend.

● Contextual Metadata:
Stores translator notes, AI confidence scores, and context hints in
_meta fields.

This strategy balances innovation with practicality, leveraging automation
and modern i18n patterns while addressing risks like data loss (via phased
rollouts) and translation quality (via AI/human hybrid workflows).

Timeline
● GSoC is around about 12 weeks in duration, with about 25 days of

Community Bonding Period in addition.
● The plan allocates time as follows:

● 10% time in fixing the bugs left out in the current version of the
app.

● 80% time on adding new features to the App.
● Remaining 10% time on testing the app, preparing Wiki and

FAQ for the template.
● Legend:Importance and time dedicated

 - Tasks that are both urgent and critical, typically in the
early stages of the project.

 - Tasks that are important but slightly less critical than the
initial setup.

- Tasks that are intermediate, less urgent but still important.

- Tasks that occur later in the timeline, focusing on
optimization, testing, and finalization.

The detailed timeline is linked below.

Time Frame
Start

Date
End Date Objectives /Tasks

Week Color

Code

Community

Bonding
May 8 June 1

Familiarize with organization's

code, community, and project

requirements; set up

development environment.

Week 1 June 2 June 8

Phase 1: Implement core

i18next framework; set up basic

translation functions and key

structure.

Week 2 June 9 June 15

Create JSON conversion

pipeline for existing localization

files; integrate with TMS

platforms like Locize/Transifex.

Week 3
June

16
June 22

Test JSON pipeline and basic

translation workflow; ensure

core functionality is operational

and error-free.

Week 4
June

23
June 29

Phase 2: Begin developing

script-aware resolution

(Kana/Kanji for Japanese).

Week 5
June

30
July 6

Implement RTL layout engine

and test bidirectional text

support.

Week 6 July 7 July 13

Ensure integration between

script-aware resolution and RTL

engine is seamless.

Week 7 July 14 July 20

Midterm Evaluation. Refactor

code based on mentor

feedback, prepare for

evaluation submission.

Week 8 July 21 July 27

Phase 3: Initiate performance

benchmarking - measure

current localization

performance metrics.

Week 9 July 28 August 3

Implement performance

optimization techniques, such

as tree-shaking, lazy loading,

and memoization.

Week 10
August

4
August 10

Develop developer tooling,

such as CLI commands for

translation sync and validation.

Week 11
August

11
August 17

Phase 4:Gradually release the

new system using feature flags;

conduct comprehensive testing.

Week 12
August

18
August 24

Finalize performance tuning

and complete a comprehensive

testing matrix.

Final

Submission

August

25

September

1

Clean up codebase, prepare

documentation (Wiki, FAQs),

and submit the final work

product for evaluation.

Wrap Up
Septe

mber 1

September

8

Final evaluations and project

wrap-up activities.

I am committed to maintaining open communication with my mentors
throughout the project and will proactively discuss any necessary

adjustments to the timeline as they arise. My goal is to ensure that I deliver
high-quality work while effectively managing any challenges that may occur
during the coding period. Thank you for your understanding and support !

Technical Requirement

As a developer experienced in JavaScript, I'm well-prepared to tackle
Sugar Labs' Internationalization project. Here's why:

1. JavaScript & Frameworks: Proficient with JavaScript (ES6+), React,
and Vue.js for building dynamic interfaces.

2. i18n Libraries: Experienced with i18next and FormatJS for managing
translation files and locale-specific formatting.

3. AI Translation APIs: Familiar with integrating AI translation services
like Google Translate and DeepL to speed up localization workflows.

4. Locale Formatting: Understand locale-aware formatting using
ECMAScript Internationalization API (ECMA-402) for culturally
relevant content presentation.

5. Problem Solving: Strong analytical skills for efficient troubleshooting
and finding optimal solutions in translation-related challenges.

6. Testing Focus: Prioritize testing (Jest, Mocha, Cypress) to ensure
reliability and reduce bugs across various languages and locales.

Engagements for the Summer

For GSoC 2025, I will be dedicating 40 hours per week exclusively to the
JS Internationalization project for Sugar Labs. I will not be taking any
internships or other commitments, allowing me to fully focus on this project.

1. Benefits of Full-Time Dedication
● Focused Productivity: Full attention to coding and refining features.
● Flexible Collaboration: Availability for mentor meetings and

community discussions.
● Timely Deliverables: Ensures milestones are met without delays.
● Quality Assurance: Enables thorough testing and documentation.

2. Note on Timeline Adjustments
While committed to this schedule, minor adjustments may be necessary
due to:

● Technical Challenges: Unexpected complexities in integration.
● Feedback Cycles: Revisions based on mentor feedback.
● Testing Outcomes: Additional time for debugging if issues arise.

I will maintain open communication with my mentors to address any
challenges promptly and ensure the project stays on track.

Conclusion
I am confident that my technical skills and experience make me a strong
candidate for the JS Internationalization project with Sugar Labs. If
selected, I am committed to dedicating my full effort to make this project a
success. Beyond the summer, I would be honored to continue contributing
to Sugar Labs and its broader educational mission.
I am also eager to participate in any educational initiatives or mentorship
programs that Sugar Labs may be involved in. I am particularly excited to
learn from the experienced mentors at Sugar Labs.
Regardless of the outcome this year, I plan to remain involved with Sugar
Labs and other related projects and to reapply in future GSoC programs.
Thank you for considering my application. I look forward to the opportunity
to work with you.
Sincerely,
Sarvesh Charpe

	Why SugarLabs ?
	 Previous Contributions to Sugarlabs
	Project Title
	Overview
	Key Elements of the Solution:
	Previous Projects around Collaboration
	 1. Multi-Language Blog Platform
	 2. International Weather App
	Migration Strategy: WebL10n to i18next v23
	This migration strategy outlines a comprehensive approach to transitioning from the outdated WebL10n localization framework to the modern i18next v23 library. The goal is to leverage advanced internationalization (i18n) patterns and AI-assisted localization to enhance the localization process, improve performance, and provide a better developer experience.

	1. Core Infrastructure Overhaul
	a. Translation Service Migration
	●Automated Conversion: A custom CLI tool (npx migrate-webl10n) converts PO files to namespaced JSON at 5x manual speed using parallel processing.
	
	○Edge-Case Handling: Script skips malformed PO entries, logs errors, and preserves metadata (e.g., timestamps, contributor IDs).
	○Validation: Post-conversion checks ensure JSON integrity with schema validation.
	●Key Normalization:Text-based keys (e.g., "The Semi-tone transposition block...") restructured into hierarchical format:
	
	
	
	
	
	
	
	
	
	
	b. Runtime Integration
	●i18next Configuration: Set up the i18next configuration in next-i18next.config.js as follows:
	This configuration implements granular fallback resolution with three-level cascading, ensuring robust language support.

	2. Advanced Japanese Localization
	●Unified JSON Structure: Consolidate Kana and Kanji translations into a single JSON file (ja.json), which simplifies maintenance and reduces file size by 50%. The structure will look like this:
	
	●Dynamic Variant Resolution: Use i18next-locize-backend for dynamic resolution of script variants, allowing for automatic fallback from Kana to Kanji and then to English.

	3. RTL & Interpolation Engine
	●Context-Aware String Handling:
	○Replaces concatenation with ICU-formatted interpolation
	●Automatic RTL Detection:
	●CSS-in-JS direction injection:

	4. AI-Powered Translation Pipeline
	5. Performance Optimization
	●Bundle Analysis: Analyze and optimize bundle sizes, achieving significant reductions:

	6. Developer Experience
	●CLI Toolchain:
	●i18next-migrate validate: Checks for missing keys/placeholders.
	●i18next-migrate sync: Pulls latest translations from Locize.
	●VS Code Integration:
	●Real-time key validation via i18next Ally.
	●Inline previews with hover tooltips.

	7. Migration Phases
	The migration will be executed in four phases over a span of twelve weeks:

	Phase 1: Core Setup (Weeks 1-3)
	●Implement the i18next framework to replace WebL10n.
	●Set up the basic infrastructure for internationalization, including fallback chains and key normalization.
	●Create an automated JSON pipeline to convert existing PO files into a structured namespaced format.
	●Configure i18next runtime settings, including granular fallback resolution and dynamic language loading.

	Phase 2: Advanced Features (Weeks 4-6)
	●Develop script-aware resolution for Japanese localization, consolidating Kana and Kanji translations into a unified JSON structure.
	●Implement an RTL layout engine to ensure proper text direction and layout for languages like Arabic.
	●Enhance string handling by replacing concatenation with interpolation to support context-aware translations.

	Phase 3: Performance Optimization (Weeks 7-9)
	●Benchmark current performance metrics (e.g., bundle size, load times, memory usage).
	●Optimize performance using techniques like tree-shaking, lazy loading for non-critical languages, and memoization of translation calls.
	●Build developer tools such as CLI commands for validating and syncing translations.

	Phase 4: Rollout and Finalization (Weeks 10-12)
	●Gradually release the new system using feature flags to ensure a smooth transition without disrupting users.
	●Conduct thorough testing of the AI-powered translation pipeline, including quality checks using GPT-4.
	●Finalize performance tuning, resolve edge cases, and integrate all translations into the system.
	●Prepare comprehensive documentation, FAQs, and a Wiki for future maintenance.

	8. Innovation Highlights
	This migration strategy introduces several innovative features:
	●Hybrid Fallback:
	○Combines regional chains + GPT-4 suggestions when no human translation exists.
	●Zero-Downtime Updates:WebSocket-based hot-reloading using i18next-chained-backend.
	●Contextual Metadata:Stores translator notes, AI confidence scores, and context hints in _meta fields.

	Timeline
	Technical Requirement
	Engagements for the Summer
	1.Benefits of Full-Time Dedication
	2.Note on Timeline Adjustments

	Conclusion

