

Google Summer of Code 2025 Proposal

 Project: Developing 8 Math games for Sugar

Basic Info

Name Ali Hassan

Github AliHassan245

Email alihsn.24.5.3@gmail.com

College National University of Science & Technology
(NUST) Pakistan

Major/Minor BS Electrical Engineering / Artificial Intelligence

Languages English, Urdu (Proficient in Writing and Speaking)

Location / Time zone: Karachi, Pakistan Standard Time (GMT+5)

mailto:alihsn.24.5.3@gmail.com

About Me

Introduction

I am a second-year BS Electrical Engineering student specializing in Artificial

Intelligence (AI). I have a keen passion for web development, machine learning,

mathematics, and game development. Additionally, I have a strong interest in

contributing to open-source projects to drive innovative solutions and make a

meaningful impact in the tech community.

Previous Open Source Experience

In addition to that, I have been working as an AI engineer in the Robotics and AI

Society at my college, where we built an AI-powered humanoid robot (MARC-I).

In this project, my contributions focused on implementing computer vision for

real-time object detection and recognition, along with reinforcement learning to

enable the robot to adapt its actions based on environmental feedback, allowing

it to perceive its surroundings and make intelligent, data-driven decisions.

Society Work

In addition to that, I have been working as an AI engineer in the Robotics and AI

Society at my college, where we built an AI-powered humanoid robot (MARC-I).

In this project, my contributions focused on implementing computer vision for

real-time object detection and recognition, along with reinforcement learning to

enable the robot to adapt its actions based on environmental feedback, allowing

it to perceive its surroundings and make intelligent, data-driven decisions.

Past Contributions

S.No. Activity Name Issues

1. 3D Volume https://github.com/llaske/sugarizer/issues/1774

2. Color My World https://github.com/llaske/sugarizer/issues/1771

3. Chart https://github.com/llaske/sugarizer/issues/1727

4. Moon https://github.com/llaske/sugarizer/issues/1730

5. Block Rain https://github.com/llaske/sugarizer/issues/1739

6.
 Abecedarium

https://github.com/llaske/sugarizer/issues/1734

7. Food Chain https://github.com/llaske/sugarizer/issues/1756

S.No. Activity Name Pull Requests

1. 3D Volume https://github.com/llaske/sugarizer/pull/1780

2. E-Book https://github.com/llaske/sugarizer/pull/1769

3. Color My World https://github.com/llaske/sugarizer/pull/1773

4. Lunar Data https://github.com/llaske/sugarizer/pull/1732

5. Chart https://github.com/llaske/sugarizer/pull/1729

Tools and Technologies

o Programming Languages: Python, C/C++, Java, JavaScript
o Game Development: Pygame, Panda3D
o Web Development: MongoDB & PostgresSQL, Express.js, React &

Vue.js, Node.js, Fast API, Rest API, Postman
o Machine Learning(AI): Scikit-Learn, NumPy, Pandas
o Computer Vision: OpenCV
o Embedded & Robotics: Arduino, ROS2
o GUI Development: Sugar, GTK
o Design & Prototyping: Figma, Adobe Photoshop
o Version Control: Git and GitHub
o Mathematics: Linear Algebra, (ODEs), Multivariable Calculus,

Probability & Statistics
o Mathematical & Circuit Simulation: MATLAB, Multisim
o Operating Systems & Development: Linux, Windows

Why Sugar Labs?

I was looking for GSoC organizations when I discovered Sugar Labs and was

inspired by how they are revolutionizing education by integrating technology into

learning. As I explored their repositories and projects, I was particularly

impressed by their use of Artificial Intelligence and Game Development as

educational tools. As a developer, I became even more interested in contributing

to Sugar Labs because it perfectly aligns with my love for Mathematics, AI, and

Game Development. This motivated me to start contributing to various Sugar

activities and games.

Another thing I liked about Sugar Labs is their mission to provide open-source

educational tools and fun activities for kids. I'm looking forward to continuing

my contributions to Sugar Labs and making a positive impact on education

through technology.

Project Goal

I plan to develop at least eight math games for Sugar Labs during the GSoC

2025 timeline, making learning engaging and interactive for children. These

activities will include classic puzzles like Four Color Map Game, Fifteen

Puzzle, and Euclid's Game, alongside AI-powered games such as Number

Detective and Sorting Hat AI, which introduce kids to machine learning

concepts. The games will feature self-designed visual assets created using

Adobe Photoshop, ensuring an intuitive and visually appealing experience.

Development will focus on core gameplay functionalities, adhering to Sugar

Labs' open-source principles, and ensuring seamless integration with the

Sugar desktop environment.

How will it Impact SugarLabs

Upon completing this project, Sugar Labs will gain eight new, fully developed

math activities. These games, including Four Color Map Game, Fifteen

Puzzle, Euclid’s Game, Number Detective, Sorting Hat AI, and others, will

introduce children to core mathematical concepts such as logical reasoning,

spatial problem-solving, and number patterns in a fun and interactive way.

In particular, the AI-powered games will provide young learners with an insight

to machine learning concepts through a gamified and visually child-friendly

manner.

Project Type

350 hours

Project Details:

Following are the description of the activities I aim to develop:

1. Four Color Theorem

Here is the prototype image of the game, designed by me, showcasing its initial

layout and gameplay.

Overview:
This activity is inspired by the classic Four Color Theorem, which states that any

arrangement of regions can be colored using only four colors so that no two adjacent

regions share the same color. The game employs a dynamic square board filled with

shapes, including polygons, irregular forms, and overlapping regions. As levels

progress, the board presents different designs that increase the puzzle’s complexity.

User Interface & Controls:

o Toolbar: The interface features a toolbar with essential editing controls including
Undo and Redo buttons, alongside a color option offering exactly four distinct
colors.

o Activity Area: The main area displays the square board filled with shapes. A
dedicated Check button is integrated into this area, enabling users to verify their
solution by ensuring that no two adjacent shapes in the square board share the
same color. Additionally, a level indicator and a score indicator are incorporated
to display both the current level and the player's score.

Gameplay Mechanics:

o Interactive Coloring: Players select a color from the palette and click on the
shapes within the board to apply it.

o Progressive Difficulty: The game starts with simpler configurations and
gradually introduces more intricate designs as the levels progress. Each new
design increases the challenge, requiring more thoughtful color assignments.

o Solution Verification: Users can click the Check button in the main activity area
to immediately verify their solution.

o Score Calculation: The primary basis for calculating the score is move
efficiency, players earn higher scores by minimizing the number of moves or
color changes needed to complete a level. This system encourages strategic
planning and optimal decision-making, rewarding players who complete levels
with fewer actions.

2. Broken Calculator

Overview

The Broken Calculator is a number puzzle game where players must form valid

mathematical equations to reach a target number, but with a twist that one digit is

disabled. This challenge encourages creative problem-solving and arithmetic skills as

players navigate around the missing key to construct correct equations.

Game Mechanics

Challenge Setup:

o Target & Broken Key: Each round presents a target number. The calculator’s
key corresponding to the first digit of the target is disabled (e.g., for 25, the “2”
key is inactive).

o Objective: Players must generate a predefined number of valid equations (for
example, five different equations) that evaluate to the target number without
using the forbidden digit.

Equation Formation:

o Allowed Inputs: Players can use all digits from 0 to 9, except the broken key,
along with the four basic arithmetic operators (+, −, ×, ÷) to form equations.

o Equation Submission: As the broken key is completely removed from the UI,
players cannot accidentally use it. They construct each equation via the
interactive calculator, and once submitted, it is added to the equation list panel.

Progression and Scoring:

o Score Indicator: The UI includes a real-time score indicator that updates after
each correctly submitted equation, providing immediate positive reinforcement
and a clear sense of progress.

o Bonus Points: Optionally bonus points or multipliers can be awarded when a
complete set (e.g., all five equations in a round) is correctly formed, encouraging
accuracy and efficiency.

User Interface (UI)

o Toolbar (Top):
At the very top of the interface, a toolbar provides quick access to key functions:

o Activity Icon: Navigates to the main game activity.
o Stop Option: Allows users to exit the activity.

o Main Activity Area (Below the Toolbar):
This area is divided into two primary sections and begins with a header:

o Header: Displays the instruction “Form five equations equal to ___” with
the target number clearly indicated, ensuring users immediately
understand the challenge.

o Left Panel – Calculator Interface:
• Digital Display: The display screen shows the current equation being
entered.
• Button Grid: A standard grid layout with buttons for digits and arithmetic
operations. The broken key, is completely removed from the interface, so
users cannot use it.
• Responsive Interactions: Each button press triggers animations and
real-time validations, offering immediate feedback as users build their
equation.

o Right Panel – Equation List:
• Equation Slots: This dedicated panel contains five distinct slots labeled
“Equation 1” through “Equation 5.”
• Dynamic Display: Each slot initially shows placeholder text and updates
to display the submitted equation once entered.
• Active Slot Highlight: Optionally the slot corresponding to the current
equation being entered can be highlighted.

3. Soma Cubes

Overview

The Soma Cube game is an interactive 3D puzzle that challenges players to assemble

a target shape using the classic seven Soma pieces. Each piece is a unique

combination of three or four cubes. The primary challenge is to build the classic 3×3×3

cube in the first level, with subsequent levels featuring more complex shapes (such as

pyramids or abstract forms). The game is designed to enhance spatial reasoning and

problem-solving skills while providing an engaging and educational experience.

Game Mechanism

1. Puzzle Structure:
o Levels: The game is divided into levels, each presenting a unique target

shape that players must recreate using the seven Soma pieces.

o Progression: The first level starts with the well-known 3×3×3 cube. As
levels advance, the target shapes become more complex, adding new
constraints and requiring innovative piece arrangements.

2. Piece Manipulation:
o Selection: Players choose a Soma piece from the piece tray.
o Rotation: Each piece can be rotated along the x, y, and z axes. Initially,

rotation controls are hidden and are revealed only when the user
accesses the tutorial option.

o Placement: After rotating, the player drags the piece onto the 3D grid
(game board). Visual drop indicators and snapping ensure that pieces
align correctly on the board.

o Validation: When a target shape is completed, the game validates the
solution and advances the player to the next level.

3. Scoring & Timing:
o A timer tracks the duration for each level.
o Scoring is based on time taken and moves made, with bonus points for

efficient solutions.

User Interface (UI) Design

1. Main Activity Area (Game Board):
o 3D Grid: Displays the puzzle board in a fixed default camera view,

showing x, y, and z axes to simulate depth.
o Target Shape Preview: A visual reference of the target shape (e.g., the

classic cube for level one) is integrated into the interface, so players know
what to aim for.

o Visual Aids: Grid lines, shadows, and highlights help the user discern
depth and correctly align pieces.

2. Toolbar:
o Activity Icon: Indicates the active game session.
o Piece Tray: Displays the seven Soma pieces for quick selection.
o Tutorial Button: When clicked, this reveals guidance on how to rotate

and place pieces. Rotation controls appear contextually when needed.
o Stop Button: Allows players to exit the current game.

Controls

1. Piece Manipulation Controls:
o Selection & Drag-and-Drop: The player selects a piece from the toolbar

and drags it into the game board.
o Rotation: Player can rotate the selected piece in x, y, z axis.
o Snap and Align: As pieces approach valid grid positions, visual indicators

and snapping features help ensure accurate placement.

2. Interface Navigation:
o Fixed Camera: The camera view is fixed by default, so players do not

have to worry about adjusting the perspective.
o Toolbar Navigation: Simple buttons in the toolbar allow players to access

tutorials, view their piece tray, or stop the game.

Reference: https://play.google.com/store/apps/details?id=sk.martinflorek.somacube

Visualizations:

https://play.google.com/store/apps/details?id=sk.martinflorek.somacube

4. Fifteen Puzzle

Overview:
The Fifteen Puzzle is a classic sliding puzzle consisting of a 4×4 grid with 15 numbered
tiles (1–15) and one blank space. The objective is to rearrange the tiles into sequential
order (reading row by row), using the blank space to slide adjacent tiles.

Game Initialization:

o Solvable Puzzle Generation:
To ensure that each puzzle is solvable, the puzzle is generated by starting with
the solved configuration and executing a series of random legal moves (only
sliding tiles adjacent to the blank space). In each move, we randomly select from
available moves, optionally excluding the reverse of the previous move, to
effectively scramble the puzzle. This guarantees that every generated puzzle is
solvable, as it is derived from the solved state through legal, reversible moves.

o Grid Setup:
A 4×4 grid is initialized where each cell contains a numbered tile or remains
empty. Tiles are presented in bright, appealing colors with clear, legible fonts.

User Input and Tile Movement:

o Input Methods:
Players interact with the puzzle using a mouse, touch input, or keyboard. Only
tiles adjacent to the blank space (horizontally or vertically) can be moved.

o Movement Mechanics:
When a valid tile is selected, it slides smoothly into the empty space with an
animated transition. Illegal moves (attempting to move non-adjacent tiles) are
ignored.

Game Logic and Win Condition:

o Move Validation:
After each move, the game updates the current configuration and checks if the
tiles are arranged in numerical order with the blank in the bottom-right corner.

o Victory Trigger:
Once the puzzle is solved, a victory screen is displayed, featuring celebratory
animations and game statistics such as total moves and elapsed time.

Additional Features:

o Move Counter and Timer:
The game tracks the number of moves made and includes a timer to add a
competitive element. Players can challenge themselves to achieve a lower move
count or complete the puzzle faster.

o Reset and Shuffle Options:
Players can reset the puzzle back to the solved state or generate a new,

randomized, yet solvable puzzle. This feature encourages repeated play and
practice.

o Responsive Feedback:
Every valid move is accompanied by subtle sound effects and visual cues, such
as a brief highlight or shadow effect on the moving tile, to provide immediate
feedback. This responsive feedback enriches the interactive experience and
helps players stay engaged.

5. Euclid’s Game

Overview:

Euclid’s Game is a two-player mathematical puzzle that brings to life the principles

behind Euclid’s algorithm. It not only challenges players to think strategically about each

move but also demonstrates how repeated subtraction reveals the greatest common

divisor (gcd) of two numbers.

How It Works:

The game starts by placing two distinct positive numbers on the board (for example, 15

and 6). These numbers are displayed on a customizable grid (ranging from 5×5 to

10×10) that organizes and shows all available moves.

o Turn-Based Moves:
Players take turns selecting any two numbers already on the board and
subtracting the smaller from the larger. For instance, if the board shows 15 and
6, subtracting 6 from 15 yields 9, which is then added to the board.

o Building the Board:
As the game progresses, each new move adds another number to the board.
Continuing our example:

o Starting with 15 and 6, the first move gives 15 – 6 = 9, so the board
becomes {15, 6, 9}.

o On the next turn, subtracting 9 – 6 = 3 (a number not yet on the board)
results in {15, 6, 9, 3}.

o A subsequent move, such as 15 – 3 = 12, then expands the board to {15,
6, 9, 3, 12}.

o Since the gcd of 15 and 6 is 3, the board will eventually include all

multiples of 3 up to 15 (i.e., 3, 6, 9, 12, and 15). When every possible new

number appears, no further moves can be made.

o Winning Condition:
The goal is to be the player who makes the last move. When a player cannot
produce a new number because any subtraction yields an already present
number, that player loses. In our example, after the complete set {3, 6, 9, 12, 15}
is formed, the player who made the final move wins.

Strategic Insights:
The underlying strategy is determined by the total number of distinct moves available,
which can be calculated as:

where N is the larger starting number and M the smaller. For example, with 15 and 6,

this gives:

This means there will be 5 distinct numbers on the board, implying a total of 3 moves

after the initial setup (since you start with two numbers). If this quotient is odd, the first

mover, who makes the first subtraction, can force a win with perfect play. If it were even,

the advantage would shift to the second player. By understanding this relationship,

players can appreciate why choosing certain starting numbers or adjusting turn order

(via a “Switch Player” option) can critically affect the outcome.

User Interface:

o Grid Size Customization:
Having this option available in the settings lets players choose a grid size
from 5×5 to 10×10. This flexibility enables them to tailor the game to their
preferences—a 5×5 grid is perfect for a faster game with fewer moves, while
a 10×10 grid supports a longer, more complex play experience.

o Turn Order Control:
Incorporating a switch-player option gives the human player the ability to
choose who goes first. This is particularly important because, as explained
above, the mathematical ratio can predetermine the winning
advantage. For example, since 15 always yields an odd quotient regardless of
the second number, a player might opt to move second to counterbalance this
edge.

6. Odd Scoring

Overview
The Odd Scoring Game is a two-player mathematical puzzle that blends strategy and
arithmetic. It challenges players to think ahead and control the parity (odd/even nature)
of their total score while moving a chip across a horizontal grid.

Game Mechanics

1. Board Layout:
o Grid: The game is played on a horizontal grid (or “band”) consisting of N

cells, numbered from 1 (leftmost) to N (rightmost).
o Starting Position: A chip starts at the rightmost cell (cell N).

2. Turn-Based Moves:
o Allowed Moves: On each turn, players can move the chip leftwards by 1,

2, or 3 cells.
o Objective: The game ends when the chip reaches the leftmost cell (cell

1).
3. Scoring:

o Each move adds its numerical value (i.e., the number of cells moved) to
that player’s running total.

o Because the total steps required are fixed at N−1 (an odd number), one
player’s total will be even and the other’s odd.

4. Winning Condition: The winner is determined by the parity of each player’s total
steps: the player with an even total wins.

5. Winning Strategy:
o A key strategy involves forcing the game into positions where the

remaining steps form a multiple of 4. This pairing strategy enables a
player to control the parity of their own total and secure a win with optimal
play.

User Interface (UI)

1. Toolbar Bar:
o The top of the screen features a toolbar with two options: Game Mode,

which allows players to select the difficulty level (Easy or Hard), and Grid
Size, which lets players adjust the number of cells (default is 10,
adjustable between 2 and 10).

2. Grid Display:
o A horizontal row of numbered cells is presented below the toolbar. Each

cell is neatly bordered and clearly labeled.
o A visual chip/circle indicates the current position on the grid.

3. Interactive Controls:
o Move buttons labeled “1,” “2,” and “3” allow the player to choose how

many cells to move the chip leftward.

o A scoreboard displays the running total of moves for both the player and
the computer in real time.

Difficulty Modes:

Difficulty Modes integrated into the settings allow users to adjust the mode according to
their skill level. Here how they work:

o Hard Mode: The computer opponent always plays optimally by calculating
the best move that forces the remaining steps into a multiple of 4,
ensuring a challenging experience.

o Easy Mode: While the computer still calculates the optimal move, it
intentionally makes suboptimal choices with a preset probability (e.g.,
30%), offering a more forgiving challenge for beginners.

Example Walkthrough

Consider a grid with 10 cells (thus the chip/circle must move a total of 9 cells):

• Initial Setup:
o The chip starts at cell 10.
o Total steps required: 10 −1 = 9

• Your First Move:
o If you move 1 step, the chip moves from cell 10 to cell 9, and 8 steps

remain.
o This choice is strategic because 8 is a multiple of 4.

• Computer’s Turn and Your Response:
o Suppose the computer moves 2 steps (from cell 9 to cell 7).
o To complete the pair to 4, you then move 2 steps (from cell 7 to cell 5).
o At this point, the total steps you have made sum up to 1 + 2 = 3, while the

computer has made 2, with 4 steps remaining.
• Final Moves:

o If the computer now moves 3 steps (from cell 5 to cell 2), you are forced to
move the final 1 step (from cell 2 to cell 1).

o Final totals become: your total = 1 + 2 + 1 = 4 (even) and the computer’s
total = 2 + 3 = 5 (odd).

o Since you have an even total, you win.

7. Make an Identity

Overview:
The Make an Identity game is an interactive puzzle designed to engage users with a
classic mathematical concept. In a Make an Identity, players must arrange a set of
distinct symbols in an n×n grid so that each symbol appears exactly once in every row
and every column. This activity not only serves as an entertaining puzzle but also
promotes logical reasoning, pattern recognition, and spatial awareness. Additionally, the
game offers different modes, such as the standard (simple) Make an Identity and a
symmetric variant that requires mirror symmetry along the main diagonal, catering to
various skill levels and learning goals.

Game Mechanism:

• Core Puzzle Dynamics:
Players interact with the puzzle by rearranging symbols to satisfy the Make an
Identity constraints. Two main manipulation methods are provided:

o Row Cycling: Clicking adjacent to a row cycles its symbols left or right,
enabling a quick shift in the order.

o Cell Swapping: Clicking two cells within the same row swaps their
contents, offering precision for fine-tuning arrangements.

• Gameplay Modes:
o Simple Mode: Enforces the basic rule that each symbol must appear once

per row and column.

o Symmetric Mode: In addition to the standard rule, the grid must be
symmetric across the main diagonal (i.e., the symbol at cell (i, j) must
equal the one at (j, i)).

• Grid Size Flexibility:
Players can select from multiple grid sizes (e.g., 3×3 for beginners, 4×4 as the
default moderate challenge, and 6×6 for advanced puzzles). Changing the grid
size dynamically adjusts the puzzle's difficulty and layout.

User Interface (UI):

• Toolbar and Controls:
The UI features an intuitive toolbar that houses all key customization and control
options. This includes:

o A game mode option for selecting the gameplay mode (Simple or
Symmetric).

o A grid size selector allowing users to choose between 3×3, 4×4, and 6×6
grids.

o A reset button to reinitialize or scramble the current puzzle without
changing the user's settings.

• Default Layout:
The game board defaults to a 4×4 numbered grid, offering a clear and
straightforward visual presentation right from the start. This 4×4 board serves as
the initial configuration, making it easy for users to understand the puzzle’s
structure immediately.

8. Number Detective

Overview

Number Detective is an engaging, educational math game designed to teach pattern

recognition and introduce basic AI concepts. In this activity, players enter a sequence of

numbers, and the game’s AI predicts the next number in the sequence. If the prediction

is incorrect, the player provides the correct number as feedback, which is used to refine

the system's predictions over time. The game uses a hybrid approach combining simple

rule-based logic with a lightweight machine learning model (e.g., linear regression or

decision trees) to continuously improve its performance.

Game Mechanism

• User Input:
Players enter a number sequence using a clearly labeled input field (e.g., “Enter
numbers separated by spaces”).

• AI Prediction:
The system analyzes the sequence using:

o Rule-Based Algorithms: To detect common patterns (such as arithmetic
or geometric progressions).

o Simple Machine Learning Models: Like linear regression or decision
trees, which learn from historical corrections and refine predictions.

• Feedback Loop:
o If the prediction is incorrect, the game prompts the player to enter the

correct number.
o This correction is sent back to update the system, enhancing future

predictions.
• Learning Process:

With each cycle of prediction and correction, the AI refines its understanding of
the patterns, demonstrating core reinforcement learning principles in a feedback-
driven context.

Frontend (User Interface)

Integration with Sugar Ecosystem:

• The activity is built using GTK and sugar3 widgets to ensure a native look and
feel within the Sugar environment. The UI is designed to align with Sugar Labs’
standards.

UI Layout and Components:

• Toolbar:
o A toolbar at the top displays the activity’s icon, help, end button.

• Main Activity Area:

o Input Field:
A large, clearly labeled text box with a placeholder (e.g., “Enter numbers
separated by spaces”).

o Prediction Display:
A prominent label that shows the prediction (e.g., “AI predicts: 5”).

o Feedback Controls:
▪ “Correct” and “Incorrect” buttons.
▪ A correction input field appears if the prediction is marked incorrect.

• Visual Enhancements:
o Consistent styling using Gtk.StyleContext and CssProvider to ensure a

clean and responsive interface.
o Smooth animations to enhance user engagement.

Note: This is a tentative design of the UI, and further modifications and refinements will
be made as the project evolves.

Event Handling and Responsiveness:

• Implement event listeners to capture user interactions (e.g., text modifications
and button clicks).

• Use debouncing and throttling techniques to manage API calls efficiently,
ensuring the UI remains responsive without overloading the backend.

Backend Integration

API Endpoints and Communication Flow:

• The backend is built using FastAPI (as part of the Sugar-AI module) and provides
endpoints (e.g., /ask) specifically for the prediction functionality.

• Workflow:
1. Data Submission:

The frontend sends the entered number sequence to the FastAPI endpoint
via an HTTP POST request.

2. Processing:
The backend processes the sequence using its rule-based logic combined
with the simple machine learning model to generate a prediction.

3. Response:
The prediction is returned as a JSON response and displayed on the
frontend.

4. Feedback Loop:
If the player marks the prediction as incorrect, the correction is sent back
to the backend, updating the model and improving future predictions.

9. Sorting Hat AI

Overview

Sorting Hat AI is an engaging, educational game designed to teach how AI classifies

objects. In this activity, players are presented with images of objects (animals, shapes,

or numbers) and are asked to label them correctly. The game’s AI learns from these

labels using classification algorithms—specifically Decision Trees or k-Nearest

Neighbors (k-NN)—and applies this knowledge to classify new objects. When the AI

misclassifies an item, children provide the correct label, improving the model's accuracy

over time. This interactive feedback loop demonstrates core machine learning principles

in a fun, hands-on way.

Game Mechanism

• User Interaction:
o Object Presentation:

The game displays an image or illustration of an object (e.g., an animal,
shape, or number) in the main activity area.

o User Labeling:
Players select the correct label from predefined categories (e.g., “Animal”,
“Shape”, “Number”) using interactive buttons or icons.

• AI Classification:
o The system processes the labeled examples using:

▪ Decision Trees: To create a clear, interpretable classification
structure.

▪ k-Nearest Neighbors (k-NN): To classify new objects based on
the similarity to labeled examples.

o The AI then predicts the category of the displayed object, and the
predicted label is shown on-screen.

• Feedback Loop:
o If the AI’s prediction is correct, the game confirms the accuracy.
o If the prediction is incorrect, the user is prompted to select the correct

label.
o This feedback is sent back to the system, updating the classification

model and refining future predictions.
• Learning Process:

o With every cycle of labeling and correction, the AI improves its decision
boundaries, demonstrating how classification models can learn over time
through user interaction.

Frontend (User Interface)

Integration with Sugar Ecosystem:

• The UI is built using GTK and sugar3 widgets, ensuring that Sorting Hat AI
integrates natively into the Sugar environment while following Sugar Labs’ design
standards.

UI Layout and Components:

• Toolbar:
o A colorful toolbar at the top displays the activity’s icon, help button, and

end button.
• Main Activity Area:

o Object Display:
A central area where the object image is shown.

o Label Options:
Colorful, child-friendly buttons or icons are provided for each category
(e.g., “Animal”, “Shape”, “Number”).

o AI Prediction Display:
A prominent label shows the AI’s current prediction (e.g., “AI predicts:
Shape”).

o Feedback Controls:
▪ “Correct” and “Incorrect” buttons enable the player to indicate if the

prediction is right.
▪ If marked “Incorrect,” a correction interface appears for selecting

the correct label.
• Visual Enhancements:

o Consistent styling using Gtk.StyleContext and CssProvider ensures a
clean, responsive interface.

o Smooth animations and vibrant colors make the experience engaging for
children.

• Event Handling and Responsiveness:
o Event listeners capture user interactions (button clicks, selection events)

to trigger classification requests.
o Debouncing and throttling techniques ensure that API calls to update the

model are managed efficiently without overwhelming the backend.

Note: This is a tentative design of the UI, and further modifications and refinements will
be made as the project evolves.

Backend Integration

API Endpoints and Communication Flow:

• The backend is built using FastAPI (integrated as part of the Sugar-AI module)
and provides endpoints (e.g., /classify) tailored to the classification functionality.

• Workflow:
1. Data Submission:

The frontend sends the object label data or the user-selected correction
via an HTTP POST request to the FastAPI endpoint.

2. Processing:
The backend processes the labeled data using the chosen classification
algorithm (Decision Trees or k-NN) to update the model and generate a
prediction for new objects.

3. Response:
The AI’s prediction is returned as a JSON response and displayed on the
frontend.

4. Feedback Loop:
When the player corrects a misclassification, the correction is sent back to
update the model, thereby improving future predictions.

Project Timeline

Community Bonding Period

8th May – 1st June

o Implement game design and
algorithms for different games.

o Create player flowcharts for all
the games.

o Maintain regular updates with
mentors and seek possible
modifications and feedback on
any game.

Week 1

2nd June – 8th June

o Tasks:
o Develop the basic UI

(toolbar, game board,
color palette).

o Implement core
mechanics: interactive
coloring and solution
verification (“Check”
button).

o Outcome:
o A working prototype of

the Four Color Map
Game.

Week 2

9th June – 15th June

o Tasks:
o Refine the Four Color

Map Game (animations,
bug fixes, additional
levels).

o Begin the Broken
Calculator: design the

calculator UI and
implement basic equation
input (with the disabled
key).

o Outcome:
o A polished Four Color

Map Game and a basic
prototype for Broken
Calculator.

Week 3

16th June - 22th June

o Tasks:
o Complete equation

validation, score
updating, and bonus logic
for Broken Calculator.

o Perform initial testing and
debugging.

o Outcome:
o A fully functional Broken

Calculator activity.

Week 4

17th June - 23rd June

o Tasks:
o Develop and finalize the

3D grid with full piece
selection, drag-and-drop,
and rotation controls.

o Create and integrate all
target shapes (starting
with the 3×3×3 cube and
any additional levels
planned).

o Implement snapping
functionality, visual aids
(e.g., grid lines,
shadows), and complete
game logic.

o Conduct thorough testing
and debugging to ensure
smooth 3D interactions
and a polished user
experience.

o Outcome:
o A complete, fully

functional Soma Cubes
activity ready for user
interaction.

Week 5

30th June - 6th July

o Tasks:
o Develop the 4×4

grid, implement
solvable puzzle
generation, and
code tile
movements with
animations.

o Add a move
counter, timer, and
victory condition
detection.

o Outcome:
o A functional

prototype of the
Fifteen Puzzle.

Week 6

7th July - 13th July

o Tasks:
o Refine the Fifteen Puzzle

(UI enhancements, bug
fixes, improved
feedback).

o Begin Euclid’s Game
development: set up the
game board and
implement basic

subtraction-based,
turn-based play.

o Mid-Evaluation: Present
completed Four Color
Map, Broken Calculator,
Soma Cubes, and Fifteen
Puzzle for mentor
feedback.

o Outcome:

o A polished Fifteen

Puzzle, a basic prototype

of Euclid’s Game, and

documented feedback

from mid-evaluation.

Week 7

14th July - 20th July

o Tasks:
o Refine Euclid’s Game

with smooth turn
transitions and accurate
move tracking.

o Initiate Odd Scoring
development: design the
horizontal grid, implement
chip movement (1, 2, or 3
cells), and set up
real-time score tracking.

o Outcome:

o A stable Euclid’s Game
and a working prototype
of Odd Scoring.

Week 8

21th July – 27th July

o Tasks:
o Enhance Odd Scoring

with improved UI
feedback and further
debugging.

o Begin development of
Make An Identity: set up

the activity interface,
implement logic for
identity creation (for
example, combining digits
or equations to form an
identity), and design the
core gameplay flow.

o Outcome:
o A polished Odd Scoring

game and a basic
working version of Make
An Identity.

Week 9

28th July – 3rd August

o Tasks:
o Complete and refine

Make An Identity
gameplay, including
interactive elements and
dynamic difficulty
settings.

o Outcome:
o A fully functional Make An

Identity activity.

Week 10

4th August - 10th August

o Tasks:
o Begin development of

Number Detective: design
the input interface and
integrate initial rule-based
prediction logic.

o Set up FastAPI endpoints
for AI predictions and
feedback.

o Outcome:

o A prototype of

Number Detective

with basic AI

functionality ready

for further

enhancement.

Week 11

11th August - 17th August

o Tasks:
o Enhance Number

Detective by integrating
lightweight machine
learning and a robust
feedback loop.

o Initiate development of
Sorting Hat AI: design the
object display, interactive
labeling, and implement
initial classification logic
(using Decision Trees or
k-NN).

o Outcome:
o Advanced progress on

Number Detective and a
basic prototype of Sorting
Hat AI.

Week 12

18th August - 24th August

o Tasks:
o Finalize Sorting Hat AI:

polish the UI, optimize the
feedback loop, and
ensure accurate
classification.

o Integrate and test all nine
activities within the Sugar
environment; conduct
final debugging and
update documentation
and demo materials.

o Outcome:

o All nine games are fully
integrated and refined,
ready for final evaluation.

Final Evaluation

25th August – 1st September

o By this time, successfully at

least 8 activities will be

developed for Sugar.

o Submit the final evaluation for

Google Summer of Code

2025, and all the

documented work.

Note: Testing the activity will involve checking it on different screen sizes to

ensure compatibility across devices. and examining edge cases and ensuring error-

free performance. Defining the user flow, and scope of these games in the

community bonding period will ensure smooth making of these activities within

the coding period.

Regular meetings and feedback will be taken from mentors to ensure smooth

working and making of these activities.

Availability

Sugar labs is the only organization I’m applying to and thus have no commitment

during GSoC towards any other organization.

I have my end-of-semester exams scheduled to conclude by the end of May and

after that I have no special commitments towards my college, no exams are

scheduled during gsoc period therefore I will be able to dedicate approximately

35-40 hours weekly to the project.

Additionally, I will be available and fully reachable from 08:00 PKT to 23:00 PKT

(as per 24-hour format).

Post-GSoC Plan

After GSoC, I plan to continue contributing to Sugar Labs by maintaining and

improving the math activities developed during the GSoC program. Additionally, I

plan to mentor and guide future contributors who wish to contribute to Sugar

Labs. Beyond this, I also aim to explore new AI-driven educational tools to further

expand the community’s impact on open-source education.

