

 1

Sugar Labs

Google Summer of Code 2025

Project Information

Name: AI-powered Debugger for Music Blocks [here]
Length: 350 Hours (Large - 12 weeks)
Mentor: Walter Bender and Sumit Srivastava
Assisting Mentor: Devin Ulibarri

Student Information

Name: Om Santosh Suneri
Email: omsuneri@gmail.com
GitHub: omsuneri
LinkedIn: Om Santosh Suneri
Sugar labs Wiki: Omsuneri
Matrix: @omsuneri:matrix.org
Preferred Language: I’m proficient in English for communication, both spoken
and written
Location: Chandigarh, India
Time Zone: Indian Standard Time (IST) (UTC +05:30)
Phone Number: +91 9405502004
Institution: University Institute of Engineering and Technology Panjab
University, Chandigarh
Program: Bachelor of Engineering in Information Technology
Stage of Completion: 2nd Year (expected May 2027)

https://github.com/sugarlabs/GSoC/blob/master/Ideas-2025.md#AI-powered-Debugger-for-Music-Blocks
https://github.com/walterbender
https://github.com/sum2it
https://github.com/pikurasa/
mailto:omsuneri@gmail.com
https://github.com/omsuneri
https://in.linkedin.com/in/om-santosh-suneri-736767166
https://wiki.sugarlabs.org/go/User:Omsuneri

 2

Introduction

A deep passion for coding and music has always driven my journey into the world
of technology and open source. My adventure began at a very young age, blending
seamlessly with my love for music and innovation. I have always believed that
technology, when combined with creativity, can lead to extraordinary possibilities,
and this belief has been the driving force behind my aspirations.

My fascination with open-source software started when I was just 11 years old. I
was using VLC Media Player, a software I enjoyed not only for its functionality but
also for its adaptability. When I discovered that VLC was open-source and that I
could modify and personalize it to my liking, it was a game-changer for me. This
revelation ignited my curiosity about Free and Open-Source Software (FOSS) and
set me on a path of exploration and learning.

My interest in technology led me to participate in national science fairs, where I
had the opportunity to present my projects on a larger platform. One of my
proudest achievements was building a face-recognition-based system for the
visually impaired using a Raspberry Pi (wearable device for visually impaired with
this functionality). I showcased this prototype at a National Level Exhibition and
Project Competition (Inspire Awards MANAK) while I was in Grade 9. This
experience not only boosted my confidence but also introduced me to Raspbian,
a Debian Linux-based operating system. My exposure to Linux further
strengthened my enthusiasm for open-source technologies and encouraged me
to delve deeper into this domain.

When I began my engineering journey in 2023, I attended a Software Freedom Day
session at my college. Actively participating in this event opened my eyes to a
broader world of open-source communities and software. This was a turning
point that pushed me to seek out a FOSS project that aligned with my love for
coding and music.

During my search, I discovered Music Blocks, a project by Sugar Labs that
beautifully blends block-based programming with music creation. I joined the
Sugar Labs community in September 2023 and became an active user of Music
Blocks. The software's ability to combine coding with musical creativity resonated
with me deeply, and I thoroughly enjoyed exploring its features.

https://www.videolan.org/vlc/
https://inspireawards-dst.gov.in/
https://en.wikipedia.org/wiki/Software_Freedom_Day
https://musicblocks.sugarlabs.org/
https://www.sugarlabs.org/

 3

In August 2024, I began contributing to Music Blocks, diving into issues, proposing
solutions, and learning extensively through hands-on contributions. The
welcoming community and the innovative nature of Music Blocks have provided
me with invaluable learning experiences, and I am still actively contributing to this
project.

My keen interest in open-source projects was further solidified when I led a team
as a finalist (Ranked 2nd All India) in the Smart India Hackathon, where we worked
on Improving open source software security using Fuzzing. This experience was
a treasure trove of new learnings, as I delved into the intricacies of software
testing and security, all while contributing to the open-source ecosystem.
Additionally, I successfully completed Hacktoberfest 2024, which was another
milestone in my open-source journey. These experiences have not only honed my
technical skills but also deepened my love for open source, as I continue to
explore, contribute, and grow within this vibrant community.

With a strong proficiency in the following technologies and a proven track record
in open-source contributions, I am eager to leverage these skills while embracing
new technologies to deliver impactful solutions for the Music Blocks community.

Programming Languages
Python, JavaScript, C++, Bash
Frameworks and Libraries
Hugging Face Transformers, PyTorch, TensorFlow, FastAPI, Pandas, NLTK
Web development
Html, CSS, JavaScript, Node.js
DevOps and Deployment
AWS, GitHub Actions, CI/CD pipelines
Data and ML tools
FAISS Elasticsearch Scikit-learn
Version control
Git, GitHub
Operating system
Linux (Debian, Raspbian, Fedora), MacOS, Windows

https://drive.google.com/file/d/1EQuFs6EEynyM6yJajk7m0DOqcjSsro_L/view?usp=drive_link
https://sih.gov.in/
https://drive.google.com/file/d/1kWJJQ3Nc0HHYfy085PyCqXMVr4LPR131/view?usp=drive_link
https://hacktoberfest.com/

 4

Why Sugar Labs?

My enthusiasm for music began when I was in Grade 4. The idea that just seven
notes (Do, Re, Mi, Fa, Sol, La, Ti) could create a vast and diverse world of music
fascinated me. I started learning piano, which introduced me to the intricacies of
music theory and opened up a new realm of creativity and fun. At the same time,
my interest in technology and coding grew, and I naturally gravitated towards
opportunities where these two passions intersected.

When I discovered Music Blocks under the Sugar Labs, it felt like the perfect
match. Music Blocks not only combines music and programming but also
empowers learning through creativity—aligning perfectly with my interests and
goals. The platform's use of a block-based programming environment to teach
music theory and coding in an interactive way is a brilliant approach to education
and creativity. It also allows me to explore and contribute to an open-source
project that aligns with my passion for both technology and music.

The tech stack of Music Blocks, primarily using JavaScript, matches my expertise
and experience. I have been working with JavaScript extensively, and contributing
to Music Blocks has helped me enhance my skills while contributing meaningful
code to the project. Moreover, the organic and welcoming nature of the Sugar
Labs community has motivated me to contribute regularly. I am an active
contributor, consistently engaging with the community, resolving issues, and
proposing enhancements on a daily basis.

Among the many open-source organizations, Sugar Labs stands out to me not just
because of its innovative projects but also because of its mission to create
educational tools that are free and accessible to all. I am inspired by the impact of
Music Blocks on learners worldwide and want to contribute more to this mission
through my work in the GSoC program.

 5

Contributions to Sugar Labs

I have been an active contributor to Sugar Labs for the past seven months, during
which I have successfully merged 60+ pull requests (PRs) in the Music Blocks
repository and 6 PRs in the www repository. My contributions have ranged from
bug fixes and feature enhancements, building test suites to documentation
improvements, all aimed at strengthening the Music Blocks ecosystem. This
hands-on experience has deepened my understanding of the project and its
community, and I am committed to continuing my contributions in a positive and
impactful manner.

I ranked 1st on the Contributors Chart over the period of last 12 months on the
sugarlabs/musicblocks repository.

https://github.com/sugarlabs/musicblocks/graphs/contributors?from=23%2F03%2F2024
https://github.com/sugarlabs/musicblocks/graphs/contributors?from=09%2F03%2F2024

 6

Issues Created by me

Below listed are the issues created by me on the sugarlabs/musicblocks repo

Issue Title Status

#4567 ESLint errors on master Closed

#4483 Auxiliary menu Breaks !! Closed

#4200 Creating tests for /js/js-exports/API Closed

#4169 Github Actions need to be updated Closed

#4078 piemenu in music keyboard widget responsive issue Closed

#4070 The Pitch piemenu do not remember the last selected accidental value Closed

#4067 Grid piemenu open along with another block’s context menu Closed

#4050 Optimize the closing of all the piemenus Closed

#4038 Issue with Note Block collapsing Closed

#4033 Temperament widget playing weird notes Open

#4025 Issue with refreshing Search Bar in the palette menu Closed

Pull Requests by me

Below listed are the Pull Requests created by me on the sugarlabs/musicblocks.

PR Title Difficulty Status

#4568 Fixes #4567 ESLint errors on master Medium merged

#4554 Adding some more points to guide_addingtest.md Easy merged

#4552 Test suite for js/blocks/ExtrasBlocks.js Medium merged

#4548 Resolving ESLint issues on the js/ directory and….. Hard merged

#4527 Test suite for the js/Blocks/DrumBlocks.js Medium merged

#4519 Refactoring ESLint workflow for accuracy…. Medium merged

#4517 Test suite for js/Blocks/BooleanBlocks.js Medium merged

#4484 Resolves conflict in index.html Medium merged

https://github.com/sugarlabs/musicblocks
https://github.com/sugarlabs/musicblocks/issues/4567
https://github.com/sugarlabs/musicblocks/issues/4483
https://github.com/sugarlabs/musicblocks/issues/4200
https://github.com/sugarlabs/musicblocks/issues/4169
https://github.com/sugarlabs/musicblocks/issues/4078
https://github.com/sugarlabs/musicblocks/issues/4070
https://github.com/sugarlabs/musicblocks/issues/4067
https://github.com/sugarlabs/musicblocks/issues/4050
https://github.com/sugarlabs/musicblocks/issues/4038
https://github.com/sugarlabs/musicblocks/issues/4033
https://github.com/sugarlabs/musicblocks/issues/4025
https://github.com/sugarlabs/musicblocks
https://github.com/sugarlabs/musicblocks/pull/4568
https://github.com/sugarlabs/musicblocks/pull/4554
https://github.com/sugarlabs/musicblocks/pull/4552
https://github.com/sugarlabs/musicblocks/pull/4548
https://github.com/sugarlabs/musicblocks/pull/4527
https://github.com/sugarlabs/musicblocks/pull/4519
https://github.com/sugarlabs/musicblocks/pull/4517
https://github.com/sugarlabs/musicblocks/pull/4484

 7

#4464 Test suites for the js/blocks/DictBlocks.js Medium merged

#4458 Test suite for js/js-export/constraints.js Medium merged

#4457 Test suite for js/js-export/ASTutils.js Medium merged

#4451 Test suite for js/js-export/generate.js Medium merged

#4450 Test suite for the js/js-export/export.js Medium merged

#4438 Workflow to run test on PR instead the upstream master Hard merged

#4427 Workflow refactored Hard merged

#4422 Resolves all the errors with VolumeActions.test.js Hard merged

#4408 Workflow for the running tests Hard merged

#4403 Test suite for js/palette.js Medium merged

#4397 Resolving all the test case errors with rubrics.js and…. Medium merged

#4388 Creating a guide for adding test suite Easy merged

#4387 Test suite for js/artwork.js Medium merged

#4386 Test suite for js/turtle-singer.js Medium merged

#4383 Test suite for js/turtledefs.js Medium merged

#4382 Test suite for js/protoblocks.js Medium merged

#4378 Test suite for js/turtles.js Medium merged

#4377 Test suite for the js/themebox.js Medium merged

#4368 Test suite for turtle-painter.js Medium merged

#4363 Test suite for rubrics.js and blockfactory.js Medium merged

#4359 Jest test suite for js/macros.js Medium merged

#4334 Test for base64Utils.js Medium merged

#4329 Removing the toggle dark mode button from the planet… Medium merged

#4321 Syncing dark mode between planet page and main page Hard merged

#4318 Tests for background.js and planetInterface.js Medium merged

#4317 Test suite for notation.js Medium merged

https://github.com/sugarlabs/musicblocks/pull/4464
https://github.com/sugarlabs/musicblocks/pull/4458
https://github.com/sugarlabs/musicblocks/pull/4457
https://github.com/sugarlabs/musicblocks/pull/4451
https://github.com/sugarlabs/musicblocks/pull/4450
https://github.com/sugarlabs/musicblocks/pull/4438
https://github.com/sugarlabs/musicblocks/pull/4427
https://github.com/sugarlabs/musicblocks/pull/4422
https://github.com/sugarlabs/musicblocks/pull/4408
https://github.com/sugarlabs/musicblocks/pull/4403
https://github.com/sugarlabs/musicblocks/pull/4397
https://github.com/sugarlabs/musicblocks/pull/4388
https://github.com/sugarlabs/musicblocks/pull/4387
https://github.com/sugarlabs/musicblocks/pull/4386
https://github.com/sugarlabs/musicblocks/pull/4383
https://github.com/sugarlabs/musicblocks/pull/4382
https://github.com/sugarlabs/musicblocks/pull/4378
https://github.com/sugarlabs/musicblocks/pull/4377
https://github.com/sugarlabs/musicblocks/pull/4368
https://github.com/sugarlabs/musicblocks/pull/4363
https://github.com/sugarlabs/musicblocks/pull/4359
https://github.com/sugarlabs/musicblocks/pull/4334
https://github.com/sugarlabs/musicblocks/pull/4329
https://github.com/sugarlabs/musicblocks/pull/4321
https://github.com/sugarlabs/musicblocks/pull/4318
https://github.com/sugarlabs/musicblocks/pull/4317

 8

#4314 Test suite for mxml.js Medium merged

#4310 Adding SITAR as a new instruments Easy merged

#4281 Improving Home Button Function Hard merged

#4280 Exporting Blocks artwork in PNG Hard merged

#4268 Increasing size of set pitch preview Easy merged

#4242 Resolves the module Exports undefined errors of the…. Easy merged

#4237 Pie menu is remembering the last selected index… Medium merged

#4227 Adding test for the Turtleactions Medium merged

#4212 Optimising the number selector in the note block octave Easy merged

#4201 Test file for the API Medium merged

#4175 FIXES #4171 pen args mismatched inside note blocks Medium merged

#4168 Test for the platformstyle.js Medium merged

#4143 Resolving the test error Medium merged

#4141 Creating Jest config and setup file Easy merged

#4130 Adding test for mathutils Medium merged

#4084 Making grid piemenu to rotate on click Easy merged

#4083 Created a prompt notification for deleted blocks Easy merged

#4071 FIXES #4070 The Pitch piemenu do not remember…. Hard merged

#4060 Increasing the size of chord pie menu Easy merged

#4059 FIXES #4051 Add note piemenu opening behind…. Easy merged

#4035 FIXES #4025 Issue with refreshing search bar…. Medium merged

#4032 FIXES #4012 Scalar step doesn’t work for…. Medium merged

#4029 FIXES #4018 More default EDO’s for…. Medium merged

#4022 FIXES #4018 More default EDO’s for…. Medium merged

#4010 FIXES #3921 Re Examine our default temperament…. Easy merged

#4006 FIXES #4000 Regression set default instrument…. Easy merged

https://github.com/sugarlabs/musicblocks/pull/4314
https://github.com/sugarlabs/musicblocks/pull/4310
https://github.com/sugarlabs/musicblocks/pull/4281
https://github.com/sugarlabs/musicblocks/pull/4280
https://github.com/sugarlabs/musicblocks/pull/4268
https://github.com/sugarlabs/musicblocks/pull/4242
https://github.com/sugarlabs/musicblocks/pull/4237
https://github.com/sugarlabs/musicblocks/pull/4227
https://github.com/sugarlabs/musicblocks/pull/4212
https://github.com/sugarlabs/musicblocks/pull/4201
https://github.com/sugarlabs/musicblocks/pull/4175
https://github.com/sugarlabs/musicblocks/pull/4168
https://github.com/sugarlabs/musicblocks/pull/4143
https://github.com/sugarlabs/musicblocks/pull/4141
https://github.com/sugarlabs/musicblocks/pull/4130
https://github.com/sugarlabs/musicblocks/pull/4084
https://github.com/sugarlabs/musicblocks/pull/4083
https://github.com/sugarlabs/musicblocks/pull/4071
https://github.com/sugarlabs/musicblocks/pull/4060
https://github.com/sugarlabs/musicblocks/pull/4059
https://github.com/sugarlabs/musicblocks/pull/4035
https://github.com/sugarlabs/musicblocks/pull/4032
https://github.com/sugarlabs/musicblocks/pull/4029
https://github.com/sugarlabs/musicblocks/pull/4022
https://github.com/sugarlabs/musicblocks/pull/4010
https://github.com/sugarlabs/musicblocks/pull/4006

 9

#3979 FIXES #3895 Add alphabet G as a block found in easy…. Easy merged

Below listed are the Pull Requests created by me on the sugarlabs/www repo

PR Title Difficulty Status

#626 Updating number counter with commas Easy merged

#616 Adding Info page for community channels Medium open

#551 Update donate.html Easy merged

#533 Linking the custom.css for the custom styling Easy merged

#530 Adding new section named reference video in MB page Medium merged

#513 Creating a proper number counter animation…. Medium merged

#467 FIXES #466 Replace Sugar stories table in html table Easy merged

https://github.com/sugarlabs/musicblocks/pull/3979
https://github.com/sugarlabs/www
https://github.com/sugarlabs/www/pull/626
https://github.com/sugarlabs/www/pull/616
https://github.com/sugarlabs/www/pull/551
https://github.com/sugarlabs/www/pull/533
https://github.com/sugarlabs/www/pull/530
https://github.com/sugarlabs/www/pull/513
https://github.com/sugarlabs/www/pull/467

 10

Presence in the Community

As an open-source contributor, I prioritize assisting new contributors to engage
with the project's issues. Active involvement within the community and regular
participation in biweekly meetings underscore my commitment to fostering
collaboration and supporting others in their contributions.
A few screenshots from the Element public conversation are here:

I have actively supported the community by identifying and reporting bugs,
assisting with project setup, and making meaningful contributions to GitHub.
Additionally, I have engaged in insightful discussions about the project with my
mentors, Devin Ulibarri, Walter Bender and Sumit Srivastava which have greatly
enriched my understanding and approach to contributing effectively.

https://github.com/pikurasa/
https://github.com/walterbender
https://github.com/sum2it

 11

Project Details

AI-powered Debugger for Music Blocks

Inspiration Behind the Idea

The idea for an AI-powered debugger for Music Blocks was born during one of the
community’s biweekly meetings. A newcomer to the community presented their
project, which, despite having all the blocks seemingly placed correctly, failed to
produce any sound. The mentors and community members, including myself,
began debugging the project collaboratively. After some analysis, we discovered
that the issue was caused by multiplying the hertz value by zero, which resulted
in no sound being generated. While the solution was simple, the process of
identifying the problem highlighted a common challenge faced by learners:
troubleshooting projects without proper guidance.

This experience sparked the idea of creating a virtual assistant that could act as a
debugger for Music Blocks. The debugger would help users identify and resolve
issues in their projects, such as the Hertz multiplication problem, while also
providing real-time answers to questions, explaining concepts, and offering
creative suggestions. This combination would not only simplify the debugging
process but also serve as a virtual instructor, guiding learners through their
creative journey and helping them overcome obstacles independently.

I proposed this idea to the mentors, and it was met with enthusiasm. The potential
to make Music Blocks more accessible and user-friendly for learners of all skill
levels resonated strongly with the community’s goals. I am excited to bring this
vision to life during the GSoC 2025 period and contribute to making Music Blocks
an even more powerful and inclusive educational tool.
The idea for this project was proposed by me in the sugarlabs/GSoC repository
of Sugar Labs through these merged pull requests.

• Adding idea for gsoc-2025
• Rewriting the idea with more AI specification
• Changing the idea title suggested by @walterbender

https://github.com/sugarlabs/GSoC
https://github.com/sugarlabs/GSoC/pull/207
https://github.com/sugarlabs/GSoC/pull/209
https://github.com/sugarlabs/GSoC/pull/244

 12

Introduction

Music Blocks is a visual, block-based programming environment designed to
teach programming and music concepts in an engaging and interactive way.
However, as highlighted during my experience in the biweekly meetings, users
often face challenges when troubleshooting their projects or fully utilizing the
platform’s features. Beginners, in particular, may struggle to understand error
messages or determine how to achieve their creative goals, while advanced users
may encounter difficulties in debugging complex projects. These challenges can
hinder the learning process and reduce the platform’s effectiveness as an
educational tool.

To address these issues, this project proposes the development of an AI-powered
debugger integrated into Music Blocks. The debugger will assist users in
identifying and resolving issues in their projects, while also providing real-time
support by answering user queries, explaining features, and offering creative
suggestions. By leveraging open-source Large Language Models (LLMs), fine-
tuned on a curated dataset of Music Blocks projects and debugging scenarios, the
debugger will be capable of understanding and interacting with users’ projects in
a meaningful way. To enhance its contextual understanding, Retrieval-
Augmented Generation (RAG) will be implemented, combining the generative
capabilities of LLMs with a comprehensive knowledge base of Music Blocks
documentation, lesson plans, and example projects. This ensures that the
debugger can provide accurate, context-aware responses tailored to the user’s
needs.

The debugger will be seamlessly integrated into the Music Blocks platform with a
user-friendly interface, while the backend will be built using FastAPI for efficient
API development and deployed on AWS for scalability and accessibility. To ensure
high-quality interactions, prompt engineering will be employed to minimize
hallucinations and improve response accuracy. Additionally, the debugger’s
output will be designed in a structured and educational format, such as step-by-
step explanations, to enhance the learning experience for students and make
complex concepts more digestible.

 13

By the end of the project, Music Blocks will have an intelligent assistant that
simplifies troubleshooting, encourages creative exploration, and makes the
platform more accessible to users of all skill levels. This enhancement aligns with
Sugar Labs’ mission to create engaging and accessible educational tools.

I am confident that my proposed approach, combined with my technical skills
and dedication, will deliver a robust and impactful solution that benefits the
Music Blocks community and supports learners worldwide.

Deliverables

Here are the major objectives on which I want to work as a part of Google Summer
of Code 2025.

1. Converter for JSON-to-Text Representation

Developing a converter tool that transforms Music Blocks’ JSON project code into
a simplified, human-readable text format. This text representation will serve as
input for the LLM and help users understand their projects better.

Implementation

• JSON Parsing: I will implement a robust JSON parsing mechanism using
Node.js's fs module to read and parse Music Blocks JSON project code. The
JSON.parse function will be used to convert the JSON string into a
JavaScript object for further processing.

• Block Mapping: I will create a mapping system using blockMap, which
associates block IDs with their corresponding data. This will enable
efficient lookup and processing of connected blocks. For example, a “Pitch”
block would be mapped to a textual description like “Pitch calculation.

• Text Generation: I will develop a recursive function, processBlock, to
traverse the block hierarchy and generate a textual representation of the
project. This function will handle both clamp connections (nested blocks)
and sequential connections (block-to-block logic).

 14

• Testing and Validation: I will implement comprehensive testing to ensure
the converter is accurate, reliable, and capable of handling a wide range of
Music Blocks projects.

• Integration: I will modularize the converter to allow seamless integration
into the debugger pipeline, enabling real-time processing of Music Blocks
projects.

JSON-to-Text Representation Convertor code
AI-powered Debugger for Music Blocks

Impact

Rigorous testing and validation will ensure the converter is robust and ready for
real-world use, while community feedback will help tailor the tool to users’ needs.

2. Data Selection and Preparation for Fine-Tuning and RAG

Curate and prepare a high-quality dataset to fine-tune the Large Language Model
(LLM) and implement Retrieval-Augmented Generation (RAG). This dataset will
serve as the foundation for training the model to understand and debug Music
Blocks projects effectively.

Implementation

• Data Collection: I will gather Music Blocks projects, debugging scenarios,
including community contributions, and planet projects. Additionally, I will
collect real-world errors and debugging scenarios from Music Blocks
teachers via a feedback form, ensuring the dataset is comprehensive and
the model robust. This approach will address practical challenges and
enhance the debugger’s effectiveness.

• Annotation: Each dataset entry will be annotated with correct solutions,
detailed explanations, and debugging steps. For example, if a project fails to
produce sound, the annotation will include the root cause (e.g., “Hertz
value set to zero”) and the solution (e.g., “Set Hertz value to a non-zero
number”). This will enable the model to learn not only how to identify issues
but also how to resolve them.

• Data Augmentation: To improve the model’s generalization, I will augment
the dataset by generating synthetic examples, such as variations of

https://github.com/omsuneri/AI-powered-Debugger-for-Music-Blocks/blob/main/Covertor/converting-json-txt.js

 15

common errors or alternative project structures. This will help the model
handle edge cases and unfamiliar scenarios effectively.

Impact
A well-curated and annotated dataset will significantly enhance the model’s ability
to understand and debug Music Blocks projects. By including diverse use cases
and synthetic examples, the model will be better equipped to handle real-world
scenarios, improving its accuracy and reliability.

3. Fine-Tuned LLM for Music Blocks

Fine-tune an open-source Large Language Model (LLM), such as LLaMA 3 or
DeepSeek-R1, on the curated Music Blocks dataset to create a Music Blocks-
specific model. This fine-tuned model will be capable of understanding and
responding to Music Blocks-related queries, debugging scenarios, and project-
specific challenges.

Implementation

• Model Selection: I will evaluate and select a base LLM model based on its
performance, size, and compatibility with open-source tools. Models like
LLaMA 3 or DeepSeek-R1 will be considered due to their balance of
efficiency and capability.

• Fine-Tuning Setup: Using Hugging Face’s transformers library, I will set up
a fine-tuning pipeline with tools like trl (Transformers Reinforcement
Learning) or TensorFlow. This pipeline will include data loading, model
training, and evaluation steps to ensure a streamlined process.

• Evaluation: The fine-tuned model will be evaluated on unseen Music Blocks
projects and debugging scenarios. Metrics such as accuracy, response
relevance, and user satisfaction will be used to assess its performance.

• Iteration: Based on evaluation results and community feedback, I will refine
the model through multiple iterations of fine-tuning. This iterative process
will ensure continuous improvement and alignment with user needs.

 16

Impact
A fine-tuned LLM specifically tailored for Music Blocks will significantly enhance
the system’s ability to understand and respond to user queries. By leveraging a
model optimized for Music Blocks, the system will provide accurate, contextually
relevant, and actionable solutions, improving the overall user experience.

4. Retrieval-Augmented Generation (RAG) for Music Blocks

Implement a Retrieval-Augmented Generation (RAG) system to enhance the
debugger’s contextual understanding and response accuracy. By combining the
strengths of retrieval-based and generative models, the RAG system will provide
users with precise, context-aware responses to their queries.

Implementation

• Knowledge Base Creation: I will build a comprehensive knowledge base
using Music Blocks documentation, lesson plans, example projects, and
planet projects. This data will be organized into structured formats, such
as FAQs and guides, to facilitate efficient retrieval.

• Baseline Evaluation with BM25:
o Creating evaluation benchmarks (evals) to assess retrieval

performance.
o Implementing BM25 as a baseline retrieval method on these evals to

establish a performance benchmark.
o Comparing the BM25 results with the RAG system to measure

improvements in relevance and accuracy.

• Retrieval Mechanism: I will use a high-performance retrieval system, such
as FAISS, to fetch relevant information from the knowledge base. The data
will be indexed for fast and accurate searching, ensuring that the most
pertinent information is retrieved for each query.

• Response Generation: The retrieved information will be combined with the
generative capabilities of the fine-tuned LLM to produce context-aware
responses. For example, if a user asks, “Why is my project not producing
sound?”, the system will retrieve relevant documentation and generate a
response like, “The Hertz value is set to zero which is not valid.”

 17

• Testing and Optimization: I will rigorously test the RAG system on a variety
of user queries to ensure accuracy and relevance. The retrieval and
generation processes will be optimized for speed and precision, ensuring a
seamless user experience.

Impact
The RAG system will significantly enhance the debugger’s ability to provide
accurate and contextually relevant responses. By leveraging a structured
knowledge base and efficient retrieval mechanisms, the system will act as a
reliable assistant for users, offering solutions and explanations grounded in
verified information.

5. Music Blocks-Synced User-Friendly UI

Design and integrate a user-friendly UI for the debugger into the Music Blocks
platform using the widget interface. This UI will seamlessly blend with the existing
Music Blocks environment, ensuring a cohesive and intuitive user experience.

Implementation

• UI Design: Leveraging the existing Music Blocks UI framework, I will create
a debugger widget that is visually consistent with the platform’s aesthetics.
The design will prioritize simplicity and ease of use, ensuring that users of
all skill levels can interact with the debugger effortlessly.

• Features: The UI will include essential features such as chat history,
debugging suggestions, and step-by-step explanations. For instance,
guiding users through the debugging process in an interactive and
educational manner.

• Accessibility: I will ensure the UI is accessible to users of all skill levels by
incorporating clear instructions, tooltips, and user-friendly navigation.
This will make the debugger approachable for beginners while remaining
useful for advanced users.

• Testing: I will conduct usability testing with community members to
gather feedback and identify areas for improvement. This iterative process
will ensure the UI meets the needs of its users and aligns with the Music
Blocks community’s expectations.

 18

Impact
A user-friendly and seamlessly integrated UI will enhance the overall usability of
the Music Blocks platform. By providing real-time assistance, debugging support,
and step-by-step guidance, the debugger will empower users to learn, create, and
troubleshoot more effectively.

6. FastAPI Endpoints and AWS Deployment

I will develop FastAPI endpoints to serve the debugger and deploy the model on
AWS, ensuring scalability, accessibility, and high performance. This will enable
users to interact with the debugger seamlessly, regardless of their location or the
scale of their usage.

Implementation

• API Design: I will design RESTful APIs using FastAPI to handle user queries
and model inference. Key endpoints will include sending queries, receiving
responses, and providing debugging suggestions. The API will be designed
with clarity and simplicity in mind, ensuring ease of integration with the
Music Blocks platform.

• AWS Deployment: I will deploy the model on AWS server (Provided by
Sugar Labs) to ensure high availability and performance. Load balancing
and auto-scaling will be implemented to handle and maintain system
reliability.

Impact
By developing FastAPI endpoints and deploying the model on AWS, I will create a
scalable and accessible solution for users worldwide. The optimized API and
robust deployment infrastructure will ensure low-latency responses and high
availability, making the debugger a reliable tool for the Music Blocks community.

7. Error Detection and Guided Problem-Solving

The fine-tuned LLM will analyze user projects and queries with a focus on error
detection while promoting problem-solving skills. Instead of providing direct
answers, the system will guide users toward identifying and resolving issues
independently.

 19

Implementation

• Error Detection: I will implement an error detection mechanism within the
LLM to identify common issues in Music Blocks projects, such as incorrect
block configurations, missing connections, or invalid parameters. When an
error is detected, the system will flag it and provide a contextual
explanation to help users understand why the issue is problematic. For
example, if a user’s project fails to produce sound, the system might detect
that the Hertz value is set to zero and explain why this prevents audio
output.

• Output Formatting: The system will present errors and suggestions in a
structured format to ensure clarity and usability. For instance, the output
might appear as:

o Error Detected: "The Hertz value in the 'Play Note' block is set to
zero, which will produce no sound."

o Suggestion: "Review the Hertz value and ensure it is set to a non-
zero number within the audible range."

• Guided Problem-Solving: Instead of providing exact solutions, the LLM will
offer hints and step-by-step guidance to help users troubleshoot and fix
issues on their own. For example, it might suggest:

o "Check the connections between the 'Pitch' and 'Play Note' blocks to
ensure they are properly linked."

o "Verify that the 'Repeat' block has a valid input for the number of
iterations."

• Enhanced User Support: To further assist users, the system will include
tooltips and interactive prompts that provide additional context and
guidance. This approach ensures users can resolve issues independently
while learning from the process.

Impact
This approach will empower users to develop critical thinking and debugging
skills, making them more proficient in using Music Blocks. By focusing on guided
problem-solving rather than direct answers, the system will enhance the
educational value of the debugger, helping users become more confident and
independent in their project creation and troubleshooting efforts.

 20

Architecture of the Debugger for Music Blocks

The architecture for the Debugger is designed to provide a scalable, context-
aware, and efficient system for assisting users. At its core, the system integrates
Retrieval-Augmented Generation (RAG) to combine the strengths of retrieval-
based and generative models. The frontend, a Music Blocks based debugger
interface, handles user interactions. User queries are processed by the Query
Management module, which ensures proper input handling and session
management. The RAG system retrieves relevant knowledge from a vector
database, which stores vector embeddings of Music Blocks documentation, lesson
plans and project examples. This knowledge is combined with user queries using
prompt engineering to generate accurate and context-aware responses. The
backend, hosted on AWS, includes a Debugger Engine powered by a fine-tuned
LLM (e.g., LLaMA or DeepSeek-R1) that has been specifically trained on Music
Blocks data. A content filter ensures responses are accurate and appropriate,
while an optional learning module allows the system to improve over time based
on user feedback.

The architecture is designed for scalability and reliability, leveraging AWS
infrastructure to handle high traffic and ensure high availability. Key features
include real-time synchronization with the user’s workspace, enabling the

 21

debugger to provide context-aware suggestions and debugging tips dynamically.
The use of a vector database ensures efficient knowledge retrieval, reducing
response latency and improving accuracy. The fine-tuned LLM ensures responses
are tailored to the Music Blocks context, while the content filter maintains the
quality and safety of interactions.

User Interface and Experience of AI-powered Debugger

Creating a project in Music Blocks can be an exciting and creative process, but it’s
common to encounter errors or unexpected behavior due to issues like incorrect
block connections, misplaced values, or logical flaws in the design. To address
these challenges, we’ve introduced an AI-Powered Debugger in the widget section
of Music Blocks, available for both Beginner and Advanced modes. This feature is
designed to help users identify and resolve errors in their projects, ensuring a
smooth and frustration-free experience.

Accessing the Debugger

When a user faces difficulty in their project, they can easily access the Debugger
by searching for it in the Palette Search or by dragging it directly from the Widget
Palette onto the canvas. Once the Debugger block is placed on the canvas, clicking
on it opens the Debugger Widget, where users can interact with the AI-powered
debugger to troubleshoot their projects.

Debugger Widget Features

1. Real-Time Project Synchronization: The Debugger Widget is designed for
maximum convenience and efficiency. As soon as the user opens the
Debugger, it automatically selects and loads the project currently present
on the canvas by default. This eliminates the need for manual intervention,
ensuring that the Debugger has immediate access to the project for analysis.

2. Interactive Text Field with Stock Questions: At the bottom of the
Debugger Widget, users will find a text field where they can describe their
issue or ask questions about their project or general music/programming-
related queries. To assist users, a set of stock questions is also provided as
examples. For instance, a user might type or select:

 22

“I want to create a forever-playing note sequence, but it’s not working. Can
you please debug my project?”
This text field is accompanied by a Send button, which submits the user’s
query along with the project code to the Debugger Engine.

3. AI-Powered Analysis: Once the query and project code are sent, the
Debugger Engine analyzes the project and provides a detailed response.
This response includes:

• Potential errors in the project.
• Possible reasons for the unexpected behavior.
• Suggestions for resolving the issue.

For instance, the Debugger might identify a missing loop block or an
incorrectly connected note block and suggest how to fix it.

4. Guided Learning: The Debugger not only helps users fix their projects but
also promotes guided learning. By understanding the errors and the
suggested solutions, users can learn how to avoid similar mistakes in the
future. This feature helps them build a deeper understanding of Music
Blocks’ functionality.

5. Seamless Integration: The Debugger Widget is designed to integrate
seamlessly into the Music Blocks environment, allowing users to continue
working on their projects while simultaneously using the Debugger.
Additionally, the Debugger not only identifies errors but also guides users
in utilizing built-in debugging tools to enhance their troubleshooting
experience. For example, it can recommend:

• Using Print and Comment Blocks to track variable values or project
progression for better understanding.

• Using run step-by-step/run slowly to understand the error point in
the project.

• Utilizing the Status Widget to monitor project status in real time.

 23

Example Workflow

1. A user creates a project but notices that the music sequence isn’t playing
as expected.

2. They drag the Debugger block from the Widget Palette onto the canvas and
click on it to open the Debugger Widget.

3. In the text field, they type: “Why isn’t my music sequence playing forever?”
and click Send.

4. The Debugger analyzes the project and responds for example:

“It looks like you’re missing a ‘Forever’ loop block. Add a ‘Forever’ block
around your note sequence to make it play continuously.”

5. For guided learning, the Debugger may provide suggestions to use built-in
debugging tools such as the Print Block, Status Widget, and more.

6. The user implements the suggestion, and their project now works as
intended.

Below is the proposed design of the Debugger, and this is how the final
implementation will look:

Figma design of debugger

 24

Some Live Demo

Conversion of JSON project code to text representation for LLM
Input Project JSON code

Output Simplified text representation

Live video of output
Please click anywhere on the image to watch the demo

https://youtu.be/WLW_PGNFREs?si=J8sjbCvKhu82ArAC

 25

Impact on Sugar Labs

The implementation of this project will have a transformative impact on Sugar
Labs and the Music Blocks community. By introducing an intelligent, context-
aware debugger, the platform will become more accessible and user-friendly,
empowering users of all skill levels to learn, create, and troubleshoot projects with
confidence. The integration of Retrieval-Augmented Generation (RAG) and fine-
tuned LLMs will ensure accurate, relevant, and educational responses, while
features like error detection and guided problem-solving will foster critical
thinking and independence among users. This project will not only enhance the
overall user experience but also strengthen the Music Blocks ecosystem by
providing a reliable, scalable, and educational tool that aligns with Sugar Labs'
mission of promoting creativity, collaboration, and learning. Additionally, the real-
time synchronization and AWS-based deployment will ensure the system is
robust, scalable, and accessible to users worldwide, further solidifying Sugar Labs'
position as a leader in educational technology.

As an experienced developer and passionate open-source contributor, I am
excited to take on the responsibility of integrating the AI-powered Debugger
into Music Blocks and delivering this feature during the GSoC 2025 period.

 26

Timeline

I will adhere to a well-defined timeline, beginning with preparatory tasks in the
pre-GSoC period and advancing through focused development during the GSoC
coding phase, ensuring consistent progress and timely completion of the project.

Community Bonding Period

• Conduct interviews with teachers to identify common pain points in
debugging Music Blocks projects.

• Analyze existing Music Blocks projects to catalog frequent error patterns.

Week 1-2: JSON-to-Text Converter Development

• Implement JSON parsing using Node.js’s fs module to read and parse Music
Blocks JSON project code.

• Develop the processBlock function to recursively traverse the block
hierarchy and generate a textual representation.

Deliverable: Basic JSON-to-text converter with block mapping and text
generation.
Tech Stack: Node.js, JavaScript, JSON parsing, FS module.

Week 3-4: Data Collection and Annotation for Fine-Tuning

• Gather Music Blocks projects, debugging scenarios, including community
contributions, and planet projects.

• Additionally, collecting real-world errors and debugging scenarios from
Music Blocks teachers via a feedback form.

• Annotate the dataset with correct solutions, explanations, and debugging
steps.

 27

Deliverable: Curated and annotated dataset ready for fine-tuning.
Tech Stack: Python, Pandas, NLTK, Hugging Face Datasets.

Week 5-6: Fine-Tuning the LLM

• Select a base LLM (e.g., LLaMA 3 or DeepSeek-R1) and set up the fine-tuning
pipeline.

• Fine-tune the LLM on the curated Music Blocks dataset.

Deliverable: Fine-tuned LLM capable of understanding Music Blocks-specific
queries.
Tech Stack: Hugging Face Transformers, trl (Transformers Reinforcement
Learning), TensorFlow, Weights & Biases.

Week 7: RAG System Implementation

• Build a knowledge base using Music Blocks documentation, tutorials, lesson
plans, and example projects.

• Implement a retrieval mechanism using FAISS for efficient knowledge
retrieval.

• Integrate the retrieval system with the fine-tuned LLM for context-aware
response generation.

Deliverable: RAG system prototype with knowledge base and retrieval mechanism.
Tech Stack: FAISS, Hugging Face Transformers, Python.

Week 8: UI Design and Integration

• Design a debugger widget that aligns with the Music Blocks UI framework.
• Implement real-time synchronization between the debugger and the user’s

workspace.
• Add features like chat history, debugging suggestions, and step-by-step

explanations.

 28

Deliverable: User-friendly debugger UI integrated into Music Blocks.
Tech Stack: JavaScript, HTML/CSS, Music Blocks UI framework.

Week 9: FastAPI Endpoints and AWS Deployment

• Design RESTful APIs using FastAPI to handle user queries and model
inference.

• Containerize the application using Docker for consistent deployment.
• Deploy the model on AWS setting up load balancing and auto-scaling.

Deliverable: Deployed debugger with FastAPI endpoints and AWS infrastructure.
Tech Stack: FastAPI, Docker, AWS, CloudWatch.

Week 10: Error Detection and Guided Problem-Solving

• Implement error detection algorithms to identify common issues in Music
Blocks projects.

• Develop structured output formatting for error messages and suggestions.
• Add guided problem-solving features (hints, step-by-step guidance) to help

users troubleshoot independently.

Deliverable: Error detection and guided problem-solving module.
Tech Stack: Python, Music Blocks JSON parser.

Week 11: Testing and Optimization

• Conduct comprehensive testing of the debugger on various Music Blocks
projects.

• Optimize the RAG system and LLM for low-latency responses and high
accuracy.

• Use AWS CloudWatch to monitor system performance and log user
interactions.

 29

Deliverable: Fully tested and optimized debugger.
Tech Stack: Python, Pytest, AWS CloudWatch.

Week 12: Documentation, Community Feedback, and Finalization

• Document the entire system, including setup instructions, API usage, and
troubleshooting guides.

• Gather feedback from the Music Blocks community through usability
testing.

• Refine the system based on community feedback and finalize the project.

Deliverable: Finalized debugger with comprehensive documentation.

Availability

I plan to dedicate 40-50 hours per week to the project, with peak availability
between Wednesday and Sunday from 8 AM to 7 PM IST. During the community
bonding period (10 May - 30 May), I will have my End-Semester exams and will be
able to contribute 2-3 hours daily. I will ensure consistent and focused efforts to
meet all project milestones and deliverables.

Progress Report

I will be updating the mentors daily on Matrix chat and demonstrating my work
through biweekly meetings. Additionally, I will write a blog every week on
https://medium.com/ about my progress and share it on my social media
profiles.

Medium: Om Santosh Suneri

https://medium.com/
https://medium.com/@omsuneri

 30

Post GSoC Plans

After the successful completion of the GSoC 2025 project, I plan to continue
contributing to Music Blocks by focusing on testing and quality assurance. I will
work on implementing Jest and Cypress testing frameworks to ensure the stability
and reliability of the platform. Additionally, I aim to guide newcomers to the
community, helping them understand the project, set up their development
environment, and make their first contributions. By mentoring new contributors,
I hope to foster a collaborative and inclusive environment that encourages growth
and innovation.

Beyond testing and community support, I am committed to enhancing Music
Blocks by improving existing features and introducing new functionalities. I will
work on optimizing the user experience, adding new tools for music creation, and
exploring innovative features that align with the community’s vision. My long-
term goal is to make Music Blocks a more powerful, user-friendly, and educational
platform, empowering users worldwide to explore the creative possibilities of
coding and music. I am excited to continue my journey with Sugar Labs and
contribute to its mission of promoting learning through technology.

Conclusion

Thank you for reading. I have provided a detailed overview of my project and how
I plan to execute it. For GSoC 2025, my main goal is to further enhance my
understanding of the project by building on my practical experience and research.

As for the technology stack, I am proficient in all the necessary technologies
required for this project, including JavaScript, Python, Hugging Face
Transformers, FastAPI, AWS, and Docker. With extensive experience in these
tools and a strong foundation in open-source development, I am confident in my
ability to deliver this project within the given timeline. I take full responsibility for
implementing the AI-powered debugger in Music Blocks, a feature that will
elevate the platform to new heights by enhancing user experience, fostering
creativity, and promoting problem-solving skills. My commitment to excellence
and passion for innovation will ensure the successful completion of this project,
making Music Blocks a more powerful and accessible tool for users worldwide.

