

AI Code generation for lesson plans and model
abstraction layer

 Ajeet Pratap Singh

Section 1: About us

My name is Ajeet Pratap Singh. I am a final-year undergraduate student at the

Chhatrapati Shahu Ji Maharaj University, Kanpur, pursuing a Bachelor’s in Computer

Science as my major.

What project are you applying for?

AI Code generation for lesson plans and model abstraction layer

Why are you interested in working with Sugar Labs? And how this project will

impact Sugar Labs?

I started contributing to Sugar Labs in November 2023. I started contributing to Sugar

Labs because I wanted to explore the open-source community and contribute to

projects. Contributing to Sugar Labs helped me understand its codebase and

whenever I got stuck mentors were readily available for help.

Other than contributions, Playing with Music Blocks is fun. Before this, I had not

experienced such an environment where we could learn concepts of music and

programming and play altogether. I have also done a project in Music Blocks named

Elephant Ring Song. Other than that I have also set up and explored the lesson plan

generator and created some lesson plans like Wonderwall Magic with Brown Eyed

Girl.

But while generating the lesson plans I’ve observed that

1. The current system lacks the ability to create code and Musicblocks’

project-specific data (I’ve added some examples and Demos ahead).

2. The current implementation is tightly coupled with one particular model

(llama3) which will make it hard to adapt to newer and more advanced models

in the future.

It will be a lot of fun if it also generates the code snippets for the Musicblocks

projects and has a model abstraction layer to swap the models easily in the future.

So, Following this, I want to use my familiarity with the codebase and love to play with

Music Blocks to add AI Code generation for lesson plans and model abstraction

layer.

This project will impact Music Blocks in the following ways:

1. Automated Code Generation: Adding AI-driven code generation for lesson

plans means that the system can automatically generate project-specific code

snippets. This saves time and reduces manual work, allowing educators and

students to focus on content and learning effectively.

Example: Understanding Chords in Music Blocks.

https://musicblocks.sugarlabs.org/index.html?id=1711535673834024&run=True
https://docs.google.com/document/d/1eYa2lfPklHtb6XJehFHrRPLJ9hRxFljpCNyN242AdpU/edit?usp=sharing
https://docs.google.com/document/d/1eYa2lfPklHtb6XJehFHrRPLJ9hRxFljpCNyN242AdpU/edit?usp=sharing

2. Improved Customization and Relevance: With the ability to generate Music

Blocks–specific data, lesson plans can be tailored more closely to the project’s

context. This results in more personalized and context-aware content,

enhancing the overall learning experience.

A good example of this can be seen here.

3. Enhanced Flexibility: By introducing a model abstraction layer, the system

becomes independent of a single model (llama3). This makes it far easier to

integrate newer, more advanced models as they become available, ensuring

the platform remains cutting-edge over time.

 Workflow:

4. Enhanced User Engagement: Dynamically generated code snippets add an

element of interactivity and creativity, which can make the learning process

more engaging and enjoyable for users.

Overall, these enhancements will lead to a more context-aware, versatile, and

user-friendly lesson plan generator system—positioning Music Blocks as a

forward-thinking tool in educational technology. It can help enhance the effectiveness of

the Sugar Learning Platform and contribute to a more engaging and interactive learning

experience for teachers and students worldwide.

Prior Experience and Skills

I've been doing software engineering for the past three years, and use JavaScript,

TypeScript, Python, React, Tailwind, LLMs, SAM model, and other Generative AI libraries

and frameworks. For the past 1 to 1.5 years, I've been contributing to Sugar Labs as a

contributor in Music Blocks. Some of my contributions are mentioned below.

PR Link Description Status

#3885 Added a feature to delete the blocks
in bulk effectively.

Merged

#3912 Implemented collaboration space for
the real-time collaboration.

Merged

#3923 Installed and configured socket.io
library for the collaboration.

Merged

#3938 Implemented the logic to make a socket
connection from the Music Blocks's client

to the collaboration server.

Merged

#3952 Built the functionality to send the changes
of adding blocks in the MB project.

Merged

#3960 Added the functionality to send the changes
of move, connect, disconnect, value-update,

and delete events.

Merged

#3963 Implemented the mechanism to create the
room for the collaboration.

Merged

#3966 Added the link creation mechanism to
share to invite the peers.

Merged

#3984 Created the collaboration mouse along with
custom and random names.

Merged

#3967 Fixed the multi-mouse bug on block
creation and collaboration link text.

Merged

https://github.com/sugarlabs/musicblocks/pull/3885
https://github.com/sugarlabs/musicblocks/pull/3912
https://github.com/sugarlabs/musicblocks/pull/3923
https://github.com/sugarlabs/musicblocks/pull/3938
https://github.com/sugarlabs/musicblocks/pull/3952
https://github.com/sugarlabs/musicblocks/pull/3960
https://github.com/sugarlabs/musicblocks/pull/3963
https://github.com/sugarlabs/musicblocks/pull/3966
https://github.com/sugarlabs/musicblocks/pull/3984
https://github.com/sugarlabs/musicblocks/pull/3967

I have raised 50+ PRs and a complete list of my PRs can be found here. Also, I have

opened 25+ issues and fixed them which can be found here.

#4014 Ideated and executed edge case of exiting the
user from the collaboration on `New Project`

and `Load project from file` events.

Merged

#4034 Wrote the comprehensive documentation for
collaboration functionality.

Merged

#Link Engineered a scalable Express.js backend
server, using Socket.IO for data

synchronization with room management and
server-side logging.

Merged

#4146 Fixed the `jest` dependency issue and
removed extra configs from `jest.config.js`.

Merged

#4157 Solved the issues of deprecated
dependencies and the old version

package-lock.json.

Merged

#3468 Fixed the position of the trashcan. Merged

#3461 Implemented the tooltips in the JavaScript
editor.

Merged

#3507 Fixed duplicate pitches issue in the phrase
maker.

Merged

#3731 Added the ctrl+z shortcut for the undo
feature for better accessibility.

Merged

#4225 Used the nginx to proxy browser requests to
collaboration-server service in docker.

In review

#4331 Fixed slow-loading issues of Music Blocks on
all the browsers.

Merged

https://github.com/sugarlabs/musicblocks/pulls?q=is%3Apr+author%3Aapsinghdev
https://github.com/sugarlabs/musicblocks/issues?q=is%3Aissue+is%3Aclosed+author%3Aapsinghdev
https://github.com/sugarlabs/musicblocks/pull/4014
https://github.com/sugarlabs/musicblocks/pull/4034
https://github.com/sugarlabs/collaboration-server
https://github.com/sugarlabs/musicblocks/pull/4146
https://github.com/sugarlabs/musicblocks/pull/4157
https://github.com/sugarlabs/musicblocks/pull/3468
https://github.com/sugarlabs/musicblocks/pull/3461
https://github.com/sugarlabs/musicblocks/pull/3507
https://github.com/sugarlabs/musicblocks/pull/3731
https://github.com/sugarlabs/musicblocks/pull/4225
https://github.com/sugarlabs/musicblocks/pull/4331

Academic Experience and Projects

 As part of my Academic learning, I have made the following projects Projects.

● Opensox.in - This app lets users find open-source projects blazingly fast. Since its launch, it

got 79,000+ impressions, 33,000+ visitors, 12,600+ queries, 1,500+ bookmarks, 550+

discord community members, 500+ signups, and 50+ countries. It is built using Typescript,

NextJS, Postgresql, NextAauth, ExpressJS, and Zustand and deployed on Vercel and

Railway.

● drawRTC - drawRTC enables users to collaborate on drawings and edit the text in real-time

with friends. The application includes tools for drawing, a real-time text editor, and the

ability to save creations as PNG or PDF. It is built using Node.js for the backend, React for

the frontend, and WebSockets for seamless interaction. Docker can be used for easy setup.

● editorX – editorX is an advanced image editing tool that allows users to interactively

modify images with precision. Users can click on any area of an image for automatic

segmentation and apply inpainting to transform that area using custom prompts. The

application includes powerful editing features such as background removal, image rotation,

flipping, resizing, and eight customizable filters with adjustable intensity. Users can also

reset edits, switch between dark and light modes, and download the final image. It is built

using the FLUX API for inpainting and the Segment Anything Model for accurate image

segmentation, providing a seamless and responsive editing experience.

Project Size

https://www.opensox.in/
https://github.com/apsinghdev/drawRTC
https://github.com/apsinghdev/editorX

I am applying for a large project (~300-350 hours).

Project Timeframe

8 May 2024 to 1 September 2024

Contact info and timezone(s)

Primary Email: ajeetpratap517@gmail.com

Secondary Email: ajeetpratapsingh351@gmail.com

Github: @apsinghdev

Matrix Id: @ajeit2023:matrix.org

Discord ID: apsinghdev

Language: Hindi (Native), English (Fluent)

Location: Kanpur, India

Time Zone: IST (GMT+5:30)

Preferred mode of Communication: Email, Google Meet, Jitsi, Matrix

Time Commitment

I am on summer vacation from 5th May to 10th July. In this time frame, I would be

able to devote ~40-45 hrs/week. After that, I would be able to devote ~20-30

hrs/week. which may increase if the need arises. I am working on the GSoC project

from around 8th May to 1st September timeframe (Note: can be extended if the need

arises).

S. No Dates Days (Total) Time Commitment

mailto:ajeetpratap517@gmail.com
mailto:ajeetpratapsingh351@gmail.com
https://github.com/apsinghdev
https://discord.com/channels/apsinghdev

1. 8th May - 10th July Mon-Sun (7) 8 hrs/day (Mon-Sun)

2. 10th July - 1st Sep Mon-Sun (7) 6 hrs/day (Mon-Sun)

Estimated Total Working Days: 90-100

Estimated Hours: 350-400 hours (This may change as per requirements).

To report my progress, I will provide detailed progress updates by writing weekly blogs,

outlining the tasks completed, challenges faced, and plans for the upcoming week.

These updates will be shared on the project's mailing list or designated communication

channel.

 Technical Requirements

As per the discussions in the meetings and on the Music Blocks’s Matrix (Element) server, we’d

need the following technologies for this project:

1. An Open source LLM

2. A vector database

3. FastAPI

4. Approximate Nearest Neighbor (ANN) algorithms

 Benefits of using an Open-source LLM

● Customizability: An open-source LLM gives us full control over the

implementation of fine-tuning and RAG, allowing us to train it specifically on Music

Blocks (MB) data for better lesson plan generation.

● Transparency: Since the model is open-source, we can inspect and modify it as

needed, ensuring transparency and avoiding reliance on proprietary solutions.

● Cost-effectiveness: Using an open-source model reduces costs significantly

compared to paid APIs, making it a cost-effective choice for long-term scalability.

● Flexibility: We can experiment with different models and architectures to optimize

performance for our specific use case.

 Benefits of using a Vector Database

● Efficient Retrieval: A vector database stores lesson plans and MB-related

content as embeddings, making retrieval more efficient and contextually relevant.

● Enhanced RAG: By integrating a vector database, we can improve

retrieval-augmented generation (RAG), ensuring the LLM fetches more accurate

and relevant information before responding.

● Scalability: It scales efficiently, allowing us to manage a growing dataset while

maintaining fast query times.

● Better Context Handling: A vector database allows us to store and retrieve

relevant past interactions, reducing the chances of context loss during

conversations.

 Benefits of using FastAPI

● High Performance: FastAPI provides an asynchronous, high-performance API

that ensures quick responses, making the system more efficient.

● Seamless Deployment: It simplifies the deployment of our lesson plan generator,

allowing the community to test and provide feedback.

● Automatic Documentation: FastAPI generates OpenAPI documentation

automatically, making it easier for developers to integrate and maintain the

system.

● Type Safety and Validation: FastAPI leverages Python's type hints and Pydantic

for automatic data validation and serialization. This ensures that the inputs and

outputs of your API are always validated, reducing errors and improving the

reliability of our lesson plan generator.

 Benefits of using Approximate Nearest Neighbor (ANN) Algorithms

● Faster Searches: ANN algorithms speed up similarity searches, helping users

quickly find relevant lesson plans based on their queries.

● Improved Context Awareness: By leveraging ANN, we can improve context

awareness, ensuring the model fetches past interactions and related topics

effectively.

● Optimized for Large Datasets: These algorithms are optimized for handling large

datasets, making them ideal for your lesson plan generator.

● Low Latency: ANN-based search techniques provide real-time retrieval, ensuring

minimal delay in fetching relevant lesson plans and content.

These are the proposed technologies required for the project. As I continue

discussions with the mentors, I will refine the requirements and make adjustments as

needed. The final selection of technologies will be determined based on these

discussions and project needs.

Other Summer Obligations,

I have no commitments in the summer. I’ll be staying back home for most of it. I have

mentioned my typical working hours above and on average will be able to spend 45-50

hours per week on the project.

Communication Channels

I am active on Emails and the Matrix (Element) app. I can work with whatever platform

my mentor prefers. Meetings can be held every week to discuss progress in the project.

Section 2: Proposal Details

Problem Statement

Project
AI Code generation for lesson plans and model abstraction layer

Target Audience
● Music Blocks Users, Teachers, and learners around the world.

Core User Need ● AI Code generation: Adding the MB-related projects to the

database and updating its RAG prompts to adapt to the MB code

would improve the response of the project efficiently. It will also

provide code snippets/starter code to build projects more

intuitively.

● LLM model abstraction layer: A model abstraction layer will

improve the system effectively as it’ll be way easier to do the

testing with different models and swap the models when we

have a better one.

 Section 2.1: WHAT (Key Milestones)

1. Create a baseline to benchmark the RAG system

a. Design Comprehensive Evaluation Framework Before Implementation

b. Make initial setup to retrieve docs using BM25

c. Creation of a baseline using BM25 to benchmark the RAG system

d. Collect a test dataset related to lesson plans and MB project code

e. Retrieve Results from Both Systems (BM25 and Vector Search)

f. Evaluate Performance Using Key Metrics
2. Generate Music Blocks project code with better context.

a. Improve the database by adding more Music Blocks (MB) project data.

b. Update RAG prompts to integrate MB-specific code efficiently.

c. Provide better starter code snippets to guide project creation.

3. Show the code as a nice snippet in the conversation.

a. Format the generated code for better readability.

b. Use syntax highlighting and proper indentation.

c. Ensure snippets include explanations where necessary.

4. Generate the related comments for better understanding.

a. Add contextual comments to explain key parts of the generated code.

b. Include references to MB concepts where relevant.

c. Ensure comments align with the learning goals of the lesson plan.

5. Make the generated code shareable (ie. pasting in Music Blocks).

a. Ensure the generated code can be directly copied and used in MB.

b. Format outputs to align with MB's expected code structure.

c. Provide a button or mechanism for easy sharing/exporting.

6. Implement the model abstraction layer in the current RAG system.

a. Decouple the system from a specific model to enable easy switching.

b. Make the system adaptable to newer models like DeepSeek R1.

c. Structure the architecture for efficient model experimentation.

7. Make response retrieval faster with ANNs.

a. Optimize retrieval mechanisms using ANNs.

b. Improve indexing and search efficiency within the RAG system.

c. Reduce response latency while maintaining context accuracy.

8. Minimize the hallucination

a. Implement techniques like Query Expansion & Reformulation.

b. Introduce Context Filtering and a Better Chunking Strategy.

c. Test and refine hallucination-reduction techniques based on

performance.

Section 2.2: HOW

 I have divided this project into three parts.

1. Creation of a baseline using BM25 to benchmark the RAG system

2. Implementation of AI code generation for lesson plans

3. Implementation of Model Abstraction Layer in the RAG System.

4. Optimization of Response Retrieval and Minimization of Hallucination.

Part 1: Creation of a baseline using BM25 to benchmark the RAG

system.

As discussed with mentors, It’s really important to create a baseline using BM25 to

benchmark the RAG system. Here are the implementation steps to create a baseline:

● Design Comprehensive Evaluation Framework Before Implementation

We will develop an unbiased evaluation framework before implementing either

BM25 or vector search systems for our RAG solution. This framework will include

categorized test queries spanning factual, procedural, and troubleshooting

scenarios relevant to Music Blocks, along with manually annotated gold-standard

answers for each query. By establishing clear metrics (Precision@K, Recall@K,

nDCG, MRR) and creating automated evaluation scripts upfront, we ensure our

implementation decisions are guided by objective performance criteria rather

than being tailored to specific test cases. This approach will facilitate fair

comparison between retrieval methods, provide consistent benchmarking

throughout development, and ultimately lead to a more robust and generalizable

RAG system for Music Blocks.

● Make initial setup to retrieve docs using BM25

We will implement a BM25-based document retrieval system to establish a

performance baseline for our RAG model. This setup will preprocess and index

documents, enabling efficient term-based matching. By integrating BM25

alongside the existing vector search, we can compare their effectiveness in

retrieving relevant content. This dual-system approach allows us to evaluate and

optimize our RAG model’s accuracy, ensuring more comprehensive and reliable

information retrieval. Here is a simple overview of its implementation:

from rank_bm25 import BM25Okapi
from nltk.tokenize import word_tokenize

Sample documents
documents = [#sample documents]

Tokenize the documents
tokenized_corpus = [word_tokenize(doc.lower()) for doc in documents]

Initialize the BM25 model
bm25 = BM25Okapi(tokenized_corpus)

Example user query
query = "chords"
tokenized_query = word_tokenize(query.lower())

Retrieve top-k documents (e.g., top 3)
top_docs = bm25.get_top_n(tokenized_query, documents, n=3)

Display results
print("Query:", query)
print("Top 3 Documents:")
for i, doc in enumerate(top_docs, 1):
 print(f"{i}. {doc}")

● Collect a test dataset related to lesson plans and MB project code

We will gather a comprehensive dataset comprising lesson plans and Music

Blocks (MB) project code to evaluate the RAG system's performance. This

dataset will include diverse examples of instructional content, user-generated MB

projects, and code snippets. By curating data from real-world use cases, we

ensure the benchmarking process reflects authentic query patterns. This dataset

will serve as a reliable reference point to compare BM25 and vector search,

facilitating accurate performance assessment and system optimization.

● Retrieve Results from Both Systems (BM25 and Vector Search)

We will retrieve and compare results from both the BM25 and vector search

systems using the same set of queries. For each query, we will collect the

top-ranked documents from both approaches. This parallel retrieval allows us to

analyze how each system performs in terms of relevance and accuracy. By

systematically capturing outputs from both methods, we can identify strengths,

weaknesses, and areas for improvement, providing a solid foundation for

benchmarking and optimizing the RAG system.

● Evaluate Performance Using Key Metrics

Finally, we’ll be able to assess the performance of BM25 and vector search using

key evaluation metrics such as Precision@K, Recall@K, and nDCG (Normalized

Discounted Cumulative Gain). These metrics will measure how accurately each

system retrieves relevant documents, how many relevant documents are found,

and how well the results are ranked. By systematically analyzing these

performance indicators, we can determine which method delivers better results,

identify areas for optimization, and ensure the RAG system meets the desired

accuracy and efficiency standards. Example:

These evaluations and benchmarking will guide us to find weaknesses in our

RAG system and will help us make the system more useful to the end user.

End-User Outcomes

The end-user outcomes of this implementation will be:

● Users will receive more relevant, precise, and contextually correct results

as the evaluation helps identify which search method retrieves better

information. Example:

(Before)

 (After)

● Evaluating latency helps balance between accuracy and speed, ensuring

quick query processing without compromising quality. Demo:

 (Please click anywhere on the image to watch the demo)

In this demo, you can observe the smoothness and speed of the responses. This is

what I have envisioned for the lesson plan generator.

Part 2: Implementation of AI code generation for lesson plans.

User Management and Collaboration Setup can be implemented by following these steps.

https://youtu.be/g78K5-81SCc

● Improve the database by adding more Music Blocks (MB) project

data.

We need to improve the database by adding more Music Blocks (MB) project

data to the existing dataset. This data follows a structured format, representing

musical elements like notes, timbre, pitch, and rhythm. By expanding the dataset,

we ensure that the Retrieval-Augmented Generation (RAG) system gets the

relevant context needed to generate accurate and meaningful code. This

enhancement will help the system better understand musical constructs and

interactions. With more comprehensive data, we can improve the precision and

efficiency of MB-related code generation. This is the sample of data that we have

to add:

[[0,["start",{"id":1741076077436,"collapsed":false,"xcor":0,"y

cor":0,"heading":0,"color":-10,"shade":60,"pensize":5,"grey":1

00}],763,100,[null,1,null]],[1,"settimbre",777,141,[0,2,4,3]],

[2,["voicename",{"value":"guitar"}],928,141,[1]],[3,"hidden",7

77,677,[1,null]],[4,["newnote",{"collapsed":false}],791,173,[1

,5,8,12]],[5,"divide",893,173,[4,6,7]],[6,["number",{"value":1

}],979,173,[5]],[7,["number",{"value":4}],979,205,[5]],[8,"vsp

ace",805,205,[4,9]],[9,"pitch",805,237,[8,10,11,null]],[10,["s

olfege",{"value":"sol"}],879,237,[9]],[11,["number",{"value":4

}],879,269,[9]],[12,"hidden",791,331,[4,13]],[13,["newnote",{"

collapsed":false}],791,331,[12,14,17,21]],[14,"divide",893,331

,[13,15,16]],[15,["number",{"value":1}],979,331,[14]],[16,["nu

mber",{"value":4}],979,363,[14]],[17,"vspace",805,363,[13,18]]

,[18,"pitch",805,395,[17,19,20,null]],[19,["solfege",{"value":

"mi"}],879,395,[18]],[20,["number",{"value":4}],879,427,[18]],

[21,"hidden",791,489,[13,22]],[22,["newnote",{"collapsed":fals

e}],791,489,[21,23,26,30]],[23,"divide",893,489,[22,24,25]],[2

4,["number",{"value":1}],979,489,[23]],[25,["number",{"value":

2}],979,521,[23]],[26,"vspace",805,521,[22,27]],[27,"pitch",80

5,553,[26,28,29,null]],[28,["solfege",{"value":"sol"}],879,553

,[27]],[29,["number",{"value":4}],879,585,[27]],[30,"hidden",7

91,647,[22,null]]]

● Update RAG prompts to integrate MB-specific code efficiently.

We’ll update the RAG prompts to efficiently integrate MB-specific code into

the system. By refining the contextualization process, we ensure that user

queries related to Music Blocks are accurately reformulated while preserving

their intent. The updated prompts will prioritize MB-related terms, helping the

system generate more relevant responses and improving code generation.

This enhancement will optimize how the RAG model interprets and structures

queries, making interactions more precise and aligned with Music Blocks'

functionalities.

The code snippet below is the overview of this functionality.

from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.llms import LlamaCpp
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings

vectorstore = FAISS.load_local("music_blocks_db",

HuggingFaceEmbeddings())

mb_prompt_template = """
You are an AI assistant specializing in Music Blocks. Reformulate the

user query to enhance retrieval accuracy by prioritizing MB-related

terms and MB code. Ensure the intent remains the same while

emphasizing MB concepts and MB code.

Original Query: {query}
Reformulated Query:
"""

prompt = PromptTemplate(template=mb_prompt_template,

input_variables=["query"])

def retrieve_mb_documents(user_query):
 reformulated_query = prompt.format(query=user_query)
 docs = vectorstore.similarity_search(reformulated_query, k=5)
 return docs

llm = LlamaCpp(
 model_path="path_to_your_llama_model.bin",
 n_ctx=2048,
 n_gpu_layers=1,
 temperature=0.7,
)

mb_chain = LLMChain(llm=llm, prompt=PromptTemplate(
 template="Given the following MB-related context, generate a

response including MB code if applicable:\n\n{context}\n\nUser Query:

{query}\nAI Response:",
 input_variables=["context", "query"]
))

def mb_rag_pipeline(user_query):
 relevant_docs = retrieve_mb_documents(user_query)
 context = "\n".join([doc.page_content for doc in relevant_docs])
 response = mb_chain.run(context=context, query=user_query)
 return response

user_input = "How do I create a new action block in Music Blocks using

MB code?"
response = mb_rag_pipeline(user_input)
print(response)

● Provide better starter code snippets to guide project creation.

To enhance project creation, we’ll provide structured starter code snippets

that represent hierarchical data in a tree-like format. These snippets will serve

as a foundation for building the Music Blocks project and will give additional

context to the beginners.

The code snippets generated by the RAG system will be similar to this:

Root (0) - start [id: 1741076077436]
|
|-- (1) settimbre
| |-- (2) voicename [value: "guitar"]
| |-- (3) hidden
|
|-- (4) newnote
| |-- (5) divide
| | |-- (6) number [value: 1]
| | |-- (7) number [value: 4]
| |
| |-- (8) vspace
| | |-- (9) pitch
| | | |-- (10) solfege [value: "sol"]
| | | |-- (11) number [value: 4]
| |
| |-- (12) hidden

Note: I am researching some better ways to present the code snippets so that

they are simple enough for kids and teachers to understand and effective

enough to provide solid learning.

● Improve code readability with syntax highlighting, indentation, comments,

and explanations.

We can improve code readability by using syntax highlighting to distinguish

keywords and variables making the code easier to follow. Also, adding

meaningful comments will allow us to explain complex sections, making it easier

for others (and our future selves) to understand. By providing concise

explanations and documentation, we ensure that our code remains accessible

and easy to use.

Root (0) - start [id: 1741076077436] # Entry point of the Project
|
|-- (1) settimbre # Sets the instrument sound
| |-- (2) voicename [value: "guitar"] # Specifies the instrument
| |-- (3) hidden
|
|-- (4) newnote # Creates a new musical note
| |-- (5) divide # Sets the note duration
| | |-- (6) number [value: 1]
| | |-- (7) number [value: 4]
| |
| |-- (8) vspace # Vertical spacing block
| | |-- (9) pitch # Defines the note's pitch
| | | |-- (10) solfege [value: "sol"] # Sets the note to "Sol"
| | | |-- (11) number [value: 4] # Sets the octave
| |
| |-- (12) hidden

Note: If I find a better way to show the code along with comments, I’ll update

the above code snippet to a better format.

● Include references to MB concepts where relevant.

We will include references to Music Blocks (MB) concepts wherever relevant to

make our lesson plans more informative and contextually accurate. By directly

linking MB concepts, we ensure that the generated content aligns with the

project's core ideas and functionalities. This will help learners better understand

how MB principles apply in real-world scenarios. Providing these references will

also enhance the credibility of our lesson plans and reduce confusion.

Something similar to this but with more specific context and details:

● Make code easily copyable and usable in MB with export options.

We can make code easily copyable and usable in Music Blocks by providing

export options. This will allow users to quickly integrate generated code into their

MB projects without manual adjustments. By offering well-formatted,

ready-to-use code snippets, we can ensure a seamless experience for learners

and educators. Export options will also enhance flexibility, enabling users to save

and reuse code efficiently in different lesson plans and projects.

For the implementation of this, we can add two buttons, Copy and Download, like

this:

Part 3: Implementation of Model Abstraction Layer in the RAG

System.

After part 1, I will test the code generation and will start implementing the Model

Abstraction Layer in the system in the following steps:

● Define the Abstraction Layer for the system.

The abstraction layer will provide a consistent interface for interacting with

different models (e.g., retrieval models, and language models). This involves

defining abstract classes or interfaces for retrieval and generation tasks.

Example:

from abc import ABC, abstractmethod

class RetrievalModel(ABC):
 @abstractmethod
 def retrieve(self, query: str, top_k: int) -> list:
 """Retrieve relevant documents for a given query."""
 pass

class GenerationModel(ABC):
 @abstractmethod
 def generate(self, context: str, query: str) -> str:
 """Generate a response based on the context and query."""
 pass

● Implement Concrete Models

After that, I’ll create a concrete implementation of the abstract classes for

specific models. For example, we might use a dense retriever like FAISS or a

sparse retriever like BM25, and a language model like Llama or DeepSeek R1.

Example:

class FAISSRetriever(RetrievalModel):
 def __init__(self, index, model):
 self.index = index
 self.model = model

 def retrieve(self, query: str, top_k: int) -> list:
 query_embedding = self.model.encode(query)
 scores, indices = self.index.search(query_embedding, top_k)
 return indices

class GPTGenerator(GenerationModel):
 def __init__(self, model):
 self.model = model

 def generate(self, context: str, query: str) -> str:
 input_text = f"Context: {context}\nQuery: {query}\nAnswer:"
 return self.model.generate(input_text)

● Integrate the Abstraction Layer into the RAG System

The RAG system will use the abstraction layer to interact with the retrieval and

generation models. This ensures that the system is not tightly coupled to specific

implementations.

 Example:

class RAGSystem:
 def __init__(self, retriever: RetrievalModel, generator:

GenerationModel):
 self.retriever = retriever
 self.generator = generator

 def answer(self, query: str, top_k: int = 5) -> str:
 # Retrieve relevant documents
 retrieved_docs = self.retriever.retrieve(query, top_k)

 # Combine documents into a single context
 context = " ".join(retrieved_docs)

 # Generate the final answer
 return self.generator.generate(context, query)

● Configure and Use the System.

After the successful implementation of the above steps, we can configure the

RAG system with different models and use it to answer queries.

Example:

Initialize models
retriever = FAISSRetriever(index=faiss_index, model=embedding_model)
generator = GPTGenerator(model=llama_model)

Create RAG system
rag_system = RAGSystem(retriever, generator)

Answer a query
response = rag_system.answer("What is the note block in Music Blocks?")
print(response)

● Extension and Customization

After this, we’ll have more than enough room to extend and customize our RAG

system. Here are a couple of ways we can do this.

1. To add a new retrieval or generation model, we can simply implement the

corresponding abstract class.

2. We can use configuration files (e.g., YAML, JSON) to manage model

settings and switch between models dynamically.

3. We can add error handling and logging to make the system robust.

4. We can optimize the abstraction layer for performance if needed.

Part 4: Optimization of Response Retrieval and Minimization of
Hallucination.

● Optimize retrieval mechanisms using ANNs.

I’ll also work on optimizing the retrieval mechanisms by using Approximate

Nearest Neighbors (ANN) algorithms to improve the speed and accuracy of

fetching relevant data. This approach allows us to efficiently search and retrieve

information from large datasets by approximating the closest matches to a

query. By implementing ANN-based retrieval, we will enhance the system’s

performance, reduce latency, and provide more precise and contextually relevant

lesson plans. This optimization will also support scalability, ensuring the system

remains responsive as data grows.

Here is a comparison between the method we use currently and ANNs:

Note: As discussed with the mentor here, the implementation of the ANNs is

subjective and after implementing the code generation feature, I’ll test if the need

for ANNs arises and only then move forward with implementing it.

● Improve indexing and search efficiency with techniques like Query Expansion &
Reformulation.

As part of the optimization process, I’ll improve indexing and search efficiency

within the Retrieval-Augmented Generation (RAG) system by optimizing data

structures and implementing advanced search techniques. Methods like Query

Expansion & Reformulation will enhance the system’s ability to understand and

process user queries more effectively. This will lead to more accurate and

relevant results by broadening or refining search terms. These improvements will

https://github.com/sugarlabs/GSoC/pull/208#discussion_r1925564840

reduce retrieval time, minimize hallucinations, and ensure the system delivers

precise lesson plans, even for complex or ambiguous queries. Here are some

examples of these techniques:

 Improving Indexing and Search Efficiency

Before Optimization: When a user searches for "Music Blocks notes," the system

scans the entire dataset sequentially, leading to slow responses.

After Optimization: Implementing vector-based indexing (e.g., FAISS or HNSW)

enables fast retrieval by mapping lesson data into high-dimensional vectors,

allowing quick lookup and reducing search time.

Query Expansion

Original Query: "Loops in Music Blocks"

Expanded Query: "Loops, iterations, repeat blocks, Music Blocks programming."

 This improves recall by covering different ways users might phrase the same

question.

Query Reformulation

Original Query: "How do I make a song?"

Reformulated Query: "How to create a melody in Music Blocks?"

This tailors the search to the Music Blocks context, providing more relevant

responses.

● Introduce Context Filtering and a Better Chunking Strategy.

One more interesting thing we can do to optimize the system is to introduce

Context Filtering and a Better Chunking Strategy to improve the accuracy

and relevance of retrieved information in the RAG system. Context Filtering

will ensure that only the most relevant data is used during retrieval, reducing

noise and improving the quality of lesson plans. Better Chunking will break

large documents into meaningful sections, preserving context across chunks

and improving retrieval precision. These techniques will minimize

hallucinations, enhance response accuracy, and ensure that the system

provides clearer and more contextually relevant lesson plans. Here are some

chunking strategies that we’ll experiment with:

1. Fixed-Length Chunking: Dividing text into fixed-size chunks (e.g., 512

tokens).

2. Semantic Chunking: Split text based on semantic boundaries like

paragraphs, sentences, or sections.

3. Sliding Window Chunking: Creating overlapping chunks to maintain

context continuity.

4. Recursive Chunking: Splitting large documents hierarchically—first by

section, then by paragraph, and finally by sentence.

5. Adaptive Chunking: Dynamically adjusting chunk sizes based on content

(e.g., larger for narrative, smaller for code).

6. Query-Specific Chunking: Adapting chunks based on the user query to

retrieve the most relevant data.

7. Metadata-Aware Chunking: Adding metadata (e.g., page number,

section header) to each chunk for better context.

● Test and refine hallucination-reduction techniques based on performance.

Finally, After the implementation of the above steps, I’ll be testing which

technique works best and we’ll move forward with the best one. By analyzing the

model’s responses and adjusting these techniques, we can systematically reduce

hallucinations. Regular evaluations will ensure the model produces more reliable

and contextually accurate lesson plans.

AI Code generation Flowchart

 Possible Edge Cases

Here are some potential edge cases to consider when implementing the code

generation and abstraction layer for the lesson plan generator:

1. Ambiguous User Inputs

● Case: The user provides vague or unclear prompts (e.g., "Explain note").

● Challenge: The system may generate inaccurate or overly generic lesson plans

without proper context.

● Solution: Implement query expansion to rephrase and clarify ambiguous

inputs before processing.

2. Context Overload

● Case: Users provide a large number of prompts, exceeding the model’s context

window.

● Challenge: The model may forget earlier inputs or provide inconsistent

responses.

● Solution: Implement a sliding window for context management to maintain the

most relevant information.

3. Irrelevant Context Inclusion

● Case: Including all previous user inputs may lead to noisy, irrelevant context.

● Challenge: The model may hallucinate by combining unrelated information.

● Solution: Use context filtering to prioritize and retain only essential inputs for

generating responses.

4. Incomplete or Missing Music Blocks Data

● Case: If Music Blocks project data is incomplete or missing from the

database.

● Challenge: The model may fabricate information to fill the gaps.

● Solution: Implement data validation checks and fallback mechanisms to alert

users of missing content.

5. Complex Multi-Step Queries

● Case: Users request lesson plans that involve multiple interconnected topics

(e.g., "Explain chords and pitch block with examples").

● Challenge: The model may fail to maintain coherence across multiple

concepts.

● Solution: Introduce advanced chunking strategies to break down multi-step

queries and process them sequentially.

6. Edge Cases in Query Reformulation

● Case: Over-simplifying or over-complicating a reformulated query.

● Challenge: This can lead to losing important context or generating irrelevant

results.

● Solution: Use feedback loops to assess the impact of reformulation and refine

the query logic accordingly.

7. Handling Special Cases in Music Blocks

● Case: Certain Music Blocks concepts may not be well-documented or are

highly niche.

● Challenge: The model may generate inaccurate or fabricated information.

● Solution: Identify and tag special cases to trigger additional validation or

fallback responses.

8. Handling Partially Completed Prompts

● Case: Users provide incomplete input (e.g., "Create a lesson plan on...").

● Challenge: The system may produce speculative or unrelated outputs.

● Solution: Use prompt clarification routines to request additional information

before processing.

9. Edge Cases in FastAPI Deployment

● Case: High user concurrency or long-running queries.

● Challenge: Performance may degrade, leading to timeouts or partial responses.

● Solution: Implement asynchronous processing and caching for faster response

times under load.

These are the few edge cases I have in my mind. I will discover and discuss more

edge cases with mentors and will consider the implementation for them. Also, some

edge cases may arise when we implement the functionalities mentioned above.

Those edge cases can be considered at the same time of implementation.

Note: While making this proposal, I have taken the reference from the most impactful
RAG papers. Along with this, I’ve used the proposal template provided by the Sugar
Labs.

Implementation Plan

https://github.com/aishwaryanr/awesome-generative-ai-guide/blob/main/research_updates/rag_research_table.md
https://github.com/aishwaryanr/awesome-generative-ai-guide/blob/main/research_updates/rag_research_table.md
https://github.com/sugarlabs/GSoC/blob/master/Template.md
https://github.com/sugarlabs/GSoC/blob/master/Template.md

GSoC is around about 12 weeks in duration. I will be spending 80% of the time on

implementing the functionalities in this project,10% of the time on fixing the bugs left

out in the current version of the project, and the remaining 10% of the time on testing

the code generation in the lesson plan RAG system and preparing the Wiki and

writing documentation for the project.

The detailed timeline is linked below.

Timeline Start Date End Date Task

Community
Bonding

8 May 01 June Further requirements gathering,
reading docs, and getting familiar
with the codebase, project set-up

Coding Period
starts

01 June 8 June List down the data requirements and
gather and process the necessary
data.

 8 June 10 June Improve the database by adding
more Music Blocks (MB) project
data.

 11 June 16 June Update RAG prompts to integrate
MB-specific code efficiently.

 17 June 1 July Integrate context fetching from the
newly added MB project data with
the LLM for code generation.

 2 July 10 July Finish the code generation feature to
provide better starter code snippets
to guide project creation.

 11 July 15 July Improve code readability with syntax
highlighting, indentation, comments,
and explanations.

Phase 1 Evaluation 14 July 18 July

 16 July 18 July Add a feature to Include references
to MB concepts where relevant.

 19 July 24 July Make code easily copyable and
usable in MB with export options.

 25 July 31 July Define the Abstraction Layer for the
system.

 1 August 5 August Implement Concrete Models and
classes.

 6 August 13 August Integrate the Abstraction Layer into
the RAG System

 14 August 16 August Add Configurations and test the RAG
system with different LLMs.

 17 August 19 August Optimize retrieval mechanisms using
ANNs.

 20 August 21 August Improve indexing and search
efficiency with techniques like Query
Expansion & Reformulation.

 23 August 27 August Test and refine
hallucination-reduction techniques
(ie. context filtering) based on
performance.

Phase 2 Evaluation 24 August 1 September

 28 August 1 September Preparing Documentation, Wiki, and
FAQs, and a Webcast on the Final
Product.

Future Work

In the future, I am going to work on

1. Deploying real-time collaboration of Music Blocks.

2. Maintaining the Lesson plan project and other AI projects.

3. handling some other edge cases that may arise when actual users use this

and provide feedback.

I can assure you that if I get selected to work at Sugar Labs this summer, I definitely

will do my best to make this project successful and would love to continue working

with Sugar Lab’s other projects even after the summer.

Also for some reason, if I am not selected this year even then I’ll contribute to this

and other projects as much as possible and retry again next year.

 Looking forward to working with us.

Thanks, And Regards

Ajeet Pratap Singh

	
	1. Ambiguous User Inputs
	2. Context Overload
	3. Irrelevant Context Inclusion
	4. Incomplete or Missing Music Blocks Data
	5. Complex Multi-Step Queries
	6. Edge Cases in Query Reformulation
	7. Handling Special Cases in Music Blocks
	8. Handling Partially Completed Prompts
	9. Edge Cases in FastAPI Deployment

