
SUGARLABS

ADD AN AI ASSISTANT TO THE WRITE ACTIVITY

March 26, 2025

T ASWATH

aswathscid@gmail.com

github.com/t-aswath

mailto:aswathscid@gmail.com
https://github.com/t-aswath

Contents

About Me . 3

Previous Works . 3

Open Source . 3

Meetings . 3

Bitspace . 4

Projects . 4

Availability . 5

Project Details . 5

Solution . 5

Project Overview . 5

Deliverables . 6

Design . 6

Design - I . 7

Design - II . 7

Indicator . 8

Test Mode . 8

Tech Stack . 9

Implementation . 9

UI . 9

Frontend . 10

Backend . 14

Model Selection and Processing . 17

Logger . 20

Deployment . 21

Tests . 21

Architecture . 22

Prototype . 22

1

SugarLabs Google Summar of Code 2025

Impact . 22

Enhancing Learning for Children . 22

Strengthening Sugar Labs’ Educational Tools . 23

Advancing Open-Source AI in Education . 23

Post-GSoC Plans & Future of the Project . 23

Long-Term Sustainability & Maintenance . 23

Future Enhancements & Improvements . 24

My Continued Contribution . 24

Timeline . 25

Community Bonding Period . 25

Week 1-2 . 25

Week 3-4 . 25

Week 5 . 25

Week 6-7 . 26

Week 8 . 26

Week 9 . 26

Week 10 . 26

Research . 27

Understanding Grammarly’s Approach . 27

Building a Custom Grammar Correction Tool . 27

Existing Grammar Correction Tools & Comparisons 27

Relevant Past GSoC Projects from Sugar Labs . 28

Technologies . 28

Conclusion . 28

Page 2 of 29

SugarLabs Google Summar of Code 2025

ABOUT ME

Hi, I’m T ASWATH, a 3rd-year B.E. CSE student at Chennai Institute of Technology with a deep

passion for AI, open-source, and competitive programming. My programming journey began

in 12th grade, and since then, I have explored diverse technologies, from system design to

cloud computing.

• Email: aswathscid@gmail.com

• Github: t-aswath

• Location: India (IST)

• First Language: Tamil

PREVIOUS WORKS

Open Source

Organization Pull request Issue

Sugar Labs 2 merged, 1 open 4 closed, 1 open

LibreOffice 3 merged -

OhMyZsh 1 merged -

Table 1: Contributions to Open Source Projects

Meetings

• Activity Team/Meetings/2025-03-12 - Intro/ phrase 1 of prototype

• Activity Team/Meetings/2025-03-19 - phrase 2 of prototype

• Activity Team/Meetings/2025-03-23 - phrase 3 of prototype

• Activity Team/Meetings/2025-03-26 - progress on phrase 4 of prototype

Page 3 of 29

https://in.linkedin.com/in/t-aswath
https://www.citchennai.edu.in/
mailto:aswathscid@gmail.com
https://github.com/t-aswath
https://github.com/search?q=repo%3Allaske%2Fsugarizer+org%3Asugarlabs+author%3At-aswath&type=pullrequests
https://github.com/search?q=repo%3Allaske%2Fsugarizer+org%3Asugarlabs+author%3At-aswath&type=issues
https://github.com/LibreOffice/core/commits/master/?author=t-aswath
https://github.com/ohmyzsh/ohmyzsh/pull/11865
https://wiki.sugarlabs.org/go/Activity_Team/Meetings/2025-03-12#T-aswath
https://wiki.sugarlabs.org/go/Activity_Team/Meetings/2025-03-19#Aswath
https://wiki.sugarlabs.org/go/Music_Blocks/2025-03-23-meeting#T-Aswath
https://wiki.sugarlabs.org/go/Activity_Team/Meetings/2025-03-26#T-aswath

SugarLabs Google Summar of Code 2025

Bitspace

I cofounded a student-led open source organization during my first year of college, to-

gether with my friends. Currently, I serve as the Vice President. Our organization conducts

workshops, hosts hackathons, and organizes competitions focused on open-source devel-

opment.

Our mission is to educate students about the significance of open source and to encourage

their active participation in the community.

Recent Activities

• Community Partner Local Host: Chennai (CIT) at FossHack 2025 by FossUnited

• Hosted a booth at the INDIA FOSS Conference 2024 by FossUnited (Check out the

booth list)

Projects

I have worked on 4 RAG-based projects—one during my internship at Cognizant and three

for Microsoft Innovation Challenge, where one of my projects secured 3rd place (TUSK) in

the competition.

• https://github.com/t-aswath/TUSK

• https://github.com/bitspaceorg/trusted-utility-for-statutory-knowledge-act-ii

• https://github.com/bitspaceorg/smart-process-innovation-network

I am proficient in technologies such as:

• Python

• Gtk

• LangChain

• ChromaDB

• AWS

• Ollama

• Hugging Face

• Docker

• OpenAI

• RAG

• JS

• TS

• REST API

• GIT

• Prompt Engineering

These skills are particularly valuable for this project. For more details on my other skills,

check out my Resume and GitHub.

Page 4 of 29

https://www.bitspace.org.in/
https://fossunited.org/hack/fosshack25
https://fossunited.org/
https://fossunited.org/indiafoss/2024
https://fossunited.org/
https://www.cognizant.com/in/en
https://techcommunity.microsoft.com/discussions/azure/announcing-the-winners-of-the-october-innovation-challenge-hackathon/4296922
https://github.com/t-aswath/TUSK
https://github.com/bitspaceorg/trusted-utility-for-statutory-knowledge-act-ii
https://github.com/bitspaceorg/smart-process-innovation-network
https://drive.google.com/file/d/1NYBrd_bTwGmhT_lVjHgPx-Lhnjtqw08n/view?usp=sharing
https://github.com/t-aswath

SugarLabs Google Summar of Code 2025

AVAILABILITY

By the end of April, my end semester exams will be over, and I will move on to my final year.

At my college, there are no coursework requirements in the final year, as all subjects are

completed in the previous semesters. The final year is entirely dedicated to internships.

My college is familiar with the Google Summer of Code program, thanks to past contributors,

and provides full-time support for students to work on GSoC.

PROJECT DETAILS

Name: Add an AI assistant to the Write Activity

Description: Sugar pioneered peer editing in its Write Activity. However, the Write Activity

has never had any serious support for grammar correction (just spell check) and none of the

more recent developments around AI-assisted writing. The goal of this project is to add AI

assistance to the writing process: both in the form of providing feedback as to what has been

written and making suggestions as to what might be written.

Project Length: 350 hours

Difficulty: High

Coding Mentors: Walter Bender, Ibiam Chihurumnaya

SOLUTION

Project Overview

The goal of this project is to develop a real-time AI-powered writing assistant for the Write

activity in Sugar. This assistant will help children improve their grammar by not only iden-

tifying and correcting mistakes but also explaining why a correction is needed and how it

improves their writing.

To achieve this, the system will extract text from the Write activity, process it using a

language model (LLM), and return the corrected text along with detailed explanations. These

insights will be presented in a simple, intuitive, and engaging user interface, ensuring a

seamless learning experience. The focus is on enhancing children’s writing skills interactively

and educationally, making grammar correction a learning opportunity rather than just an

automated fix.

Page 5 of 29

https://github.com/walterbender/
https://github.com/chimosky/

SugarLabs Google Summar of Code 2025

Deliverables

• Two Grammar Checking Modes:

– Co-Pilot Mode: Provides real-time grammar suggestions as the child writes, acting

as a supportive writing assistant.

– Test Mode: Allows children to write freely and receive corrections only after com-

pleting their text, encouraging independent learning.

• Intuitive User Interface:

– A user-friendly UI that highlights corrections, making it easy for children to un-

derstand and learn from their mistakes.

• Grammar Checker Status Indicator:

– A visual indicator that displays the real-time status of the grammar checker,

ensuring users are aware of when corrections are being processed.

• Auto-Complete for Corrections:

– An intelligent auto-complete feature that seamlessly integrates suggested correc-

tions into the text, helping children learn proper grammar effortlessly.

• Suggestions:

– Grammar suggestions will be tailored to specific age groups, ensuring clarity and

ease of understanding. The complexity of suggestions will be adjusted based on

the user’s age to provide appropriate and effective guidance.

DESIGN

I am proposing only the layout of the interface, not the specific style or color scheme, as

these aspects are best discussed with the UI/UX team to ensure alignment with Sugar Labs’

design standards. I have outlined two possible layout options, but we can proceed with either

of these or adopt an entirely different layout if Sugar Labs already has a preferred design in

mind. I am fully flexible and open to implementing any design that best fits the project’s

needs.

Page 6 of 29

SugarLabs Google Summar of Code 2025

Design - I

Figure 1: Sidebar style layout

Design - II

Figure 2: Tool Tip style layout

Page 7 of 29

SugarLabs Google Summar of Code 2025

Indicator

Figure 3: Indicator and its States

Test Mode

Figure 4: Button to switch modes

Page 8 of 29

SugarLabs Google Summar of Code 2025

TECH STACK

• Python

• LangChain

• FastAPI

• Asyncio

• pydantic

• Gtk

• Ollama

• Docker

• AWS

IMPLEMENTATION

This section provides a comprehensive breakdown of the project’s implementation, divided

into several key components.

User Interface (UI)

For the UI, we will adhere to the traditional Sugar Labs approach by leveraging GTK with

sugar3, specifically:

• sugar3.graphics

• sugar3.activity.widgets

Additionally, we will incorporate custom widgets from widgets.py along with newly

designed widgets to implement the proposed UI design.

Required UI Components

The following widgets will be essential for the project:

• Sidebar – Displays grammar suggestions.

• Suggestion Widget – Shows suggested corrections.

• Sidebar Toggle Button – Allows users to open and close the sidebar.

• Mode Toggle Button – Switches between different modes (Test, Copilot).

• Progress Indicator (Custom Spinner) – Displays the status of the grammar checker.

• Custom Text Tags – Highlights errors and displays suggestions.

• Tooltip-like Suggestions – Provides inline grammar suggestions.

Page 9 of 29

SugarLabs Google Summar of Code 2025

Text Highlighting

To highlight errors within the text:

1. We will create custom Gtk.TextTag objects for text highlighting.

2. Upon receiving the payload, the erroneous sentences will be identified.

3. The identified errors will be highlighted using these custom tags.

Sidebar Design

The sidebar will contain:

• A Gtk.ScrolledWindow to display multiple suggestions.

• Gtk.Label elements to present grammar suggestions.

• Gtk.EventBox to make suggestions clickable, enabling automatic corrections.

Styling

To ensure the UI aligns with Sugar Labs’ design principles, we will use CSS for styling.

• Gtk.StyleContext and Gtk.CssProvider will be utilized to apply custom styles to

the widgets.

• The UI will be clean, responsive, and visually appealing, ensuring an intuitive experi-

ence for users.

Frontend

The frontend, or the Activity’s back office, is responsible for managing the core functionalities

of the project. It handles user interactions, processes text modifications, communicates with

the backend, and ensures efficient performance without compromising user experience.

Core Responsibilities

The frontend is responsible for handling the following features:

1. Event Listeners for the Text View

Page 10 of 29

SugarLabs Google Summar of Code 2025

• Detects the right time to request grammar suggestions.

• Monitors text modification events.

• Implements debouncing and throttling to optimize request timing.

• Calculates user pauses to determine when to request suggestions.

2. Requesting Suggestions from the Backend

• Sends the modified text along with the user’s age group to receive age-appropriate

suggestions.

3. Handling Backend Responses

• Highlights errors in the text.

• Marks text for auto-correction.

• Stores suggestions for easy access.

• Applies auto-corrections when suggestions are clicked.

• Displays suggestions in the sidebar.

Event Listeners in the Text View

To efficiently determine when to request suggestions, event listeners will track various actions

that modify the text, including:

• Text modification events (insert-text).

• Keystrokes (backspace, delete, enter).

• Editing actions (paste, cut, undo, redo).

These listeners help detect:

• User pauses (to trigger requests when typing slows down).

• Sentence/paragraph completion (to request suggestions at logical points in the text).

By monitoring these interactions, we ensure that suggestions are requested only when

necessary, improving efficiency and reducing unnecessary backend requests.

Page 11 of 29

SugarLabs Google Summar of Code 2025

Optimizing Requests with Debounce and Throttle

To prevent excessive backend calls and ensure performance efficiency, we will implement:

• Debouncing – Cancels a previous request if a new request is made before the previous

one is completed. This prevents redundant requests when users are actively typing.

• Throttling – Limits the number of requests made within a specific time frame, ensuring

that the backend is not overloaded with frequent requests.

The frontend will send requests using the requests library, providing:

• The text to be checked.

• The user’s age group (to tailor grammar suggestions accordingly).

Processing Backend Responses

Once the backend returns grammar suggestions, the frontend will:

1. Locate the Sentences Containing Errors

• The response will include a list of problematic sentences and their respective

corrections.

• The frontend will search for these sentences in the Gtk.TextBuffer using the

forward_search method.

2. Highlight the Incorrect Text

• Custom Gtk.TextTag objects will be created for highlighting text with errors.

3. Mark Text for Auto-Correction

• Gtk.TextMark will be used to track portions of text flagged for correction.

• These marks allow quick retrieval of text positions using get_iter_at_mark.

4. Store Suggestions for Quick Access

• All received corrections will be stored in a dictionary, ensuring efficient retrieval.

5. Display Suggestions in the Sidebar

• Suggestions will be dynamically displayed using custom widgets inside the side-

bar.

• Clicking a suggestion will trigger auto-correction (explained below).

Page 12 of 29

SugarLabs Google Summar of Code 2025

Auto-Correction Mechanism

When a user clicks on a suggestion, the incorrect text will be replaced using Gtk.TextBuffer

methods:

• delete() – Removes the incorrect text.

• insert() – Inserts the corrected version.

Once the correction is applied:

• The suggestion will be removed from the sidebar.

• The corresponding text highlight will be cleared.

Ensuring UI Responsiveness

To prevent the UI from freezing when processing large amounts of text, we will:

• Use GLib.idle_add() to execute functions within the main loop asynchronously.

• This ensures that the text processing and UI updates happen smoothly without block-

ing user interactions.

Efficient Sentence Searching

Searching for problematic sentences in long text documents can be computationally ex-

pensive. Native Gtk search methods operate in O(n) time, meaning that searching for n

sentences takes O(n²) time.

To optimize this:

1. Limit the Search Range

• Since we process text incrementally, we can restrict the search scope to newly

modified text instead of scanning the entire document.

2. Leverage Write Activity’s Search Functionality

• If Write Activity’s built-in search mechanism provides a more efficient algorithm,

we will integrate it.

• If its performance is comparable to Gtk’s, we will adapt our optimization strategies

to improve it.

Page 13 of 29

SugarLabs Google Summar of Code 2025

Integration with AbiWord for Contextual Grammar Checking

To improve efficiency further, we will:

1. Detect the User’s Current Page

• AbiWord provides tools to determine which page the user is currently working on.

2. Limit Suggestions to Relevant Pages

• Instead of checking the entire document, we will restrict grammar checking to:

– The current page.

– One or two pages before and after the current page.

3. Cache Suggestions for Each Page

• By caching suggestions per page, we:

– Avoid repeated backend requests.

– Allow users to switch pages seamlessly without reloading suggestions.

By implementing these strategies, we ensure a fast, accurate, and user-friendly grammar

correction system while optimizing computational resources.

Backend

Now, let’s dive into the backend, which I believe is the heart of this project. The backend is

responsible for processing user input, performing grammar checks, and returning structured

suggestions to the frontend.

Core Responsibilities

The backend will handle the following key functionalities:

POST "/invoke" Endpoint

• Receives the text to be checked along with the user’s age group.

Grammar Checking using an LLM

• Uses a Large Language Model (LLM) to identify grammar mistakes.

Text Rephrasing and Formatting

Page 14 of 29

SugarLabs Google Summar of Code 2025

• Improves text clarity and readability, making it easier to understand.

Response Validation and Type Checking

• Ensures all responses follow a well-defined structure using pydantic.

Logging and Debugging

• Maintains detailed logs for monitoring and debugging purposes.

Sending the Response to the Frontend

• Delivers structured and validated results to the frontend.

Implementation Details

The backend will be built using FastAPI, a modern web framework that provides high-

performance APIs with built-in support for type validation and asynchronous processing.

We will create a POST endpoint /invoke, which will:

• Accept text input and user age group.

• Validate incoming data using pydantic.

• Invoke a chain of functions that:

– Analyze grammar mistakes using an LLM.

– Rephrase and format the text.

– Validate and structure the response.

• Return the processed data to the frontend.

Processing Flow: The LangChain Workflow

The AI-driven workflow follows this structured LangChain pipeline:

Step 1: Receive User Input

• The input text is formatted for processing.

• A structured prompt is prepared for the LLM to analyze grammar mistakes.

Step 2: Grammar Checking using an LLM

Page 15 of 29

SugarLabs Google Summar of Code 2025

• The LLM is called to detect grammatical issues.

• The model follows a predefined system prompt to analyze the text.

• The response includes:

– Grammar errors detected.

– Suggestions for correction.

Step 3: Rephrasing and Formatting

• The response is further processed to improve clarity and readability.

• This ensures that users of any literacy level can easily understand the corrections.

Step 4: Send the Response to the Frontend

• The final response is structured and sent back to the frontend.

Each step includes response validation to ensure correctness.

Ensuring Scalability and Performance

Asynchronous Processing

• To handle multiple requests efficiently, all functions will use async and await.

• This prevents blocking operations and improves response time.

Leveraging LangChain for AI Processing

• We will utilize LangChain’s asynchronous methods like:

– ainvoke() – Asynchronously invokes the LLM.

– abatch() – Processes multiple requests in parallel.

• This ensures optimized performance when handling multiple users simultaneously.

Handling JSON Responses and Fixing Errors

• Since the LLM generates responses in JSON format, we will use the json module to

process them.

• However, models sometimes produce malformed JSON due to syntax errors.

Page 16 of 29

SugarLabs Google Summar of Code 2025

• To fix this, we will implement OutputFixingParser from LangChain:

– It automatically corrects syntax errors in the JSON response.

– Ensures that the final output is structured correctly before sending it to the

frontend.

Model Execution Using Ollama

To run the LLM, we will use Ollama, a framework that allows us to deploy and manage AI

models locally or on a server.

• We will pull the required model into our environment.

• Use the langchain-ollama integration to execute the model within our FastAPI back-

end.

• This provides efficient, asynchronous AI processing with minimal latency.

Model Selection and Processing

In this section, we will discuss the process of model selection and the methods used to

achieve the expected results. The following key topics will be covered:

1. Model Selection

2. Grammar Checking

3. Rephrasing

4. OutputFixingParser for JSON Correction

1. Model Selection

Selecting the right model is a critical step in ensuring the effectiveness of the grammar-

checking system. We will explore various sources such as:

• Hugging Face – A repository of state-of-the-art NLP models.

• Ollama Collections – Provides LLMs optimized for local inference.

• Kaggle – Offers access to fine-tuned and pre-trained models.

Page 17 of 29

SugarLabs Google Summar of Code 2025

We will evaluate two types of models:

1. General-purpose language models – These can be fine-tuned for grammar correction.

2. Pre-trained grammar-checking models – Models specifically trained for grammatical

analysis and correction.

Benchmarking and Evaluation Criteria

To identify the best model for our project, we will conduct rigorous benchmarking based

on the following factors:

• Accuracy – How well the model identifies grammar mistakes.

• Inference Speed – The response time for real-time grammar checking.

• Context Window Size – The model’s ability to analyze large text inputs.

• Reasoning Ability – The model’s capacity to understand complex sentence structures.

• Response Quality – The clarity and correctness of the model’s output.

The selected model will be integrated into our FastAPI backend, ensuring scalability and

efficiency.

2. Grammar Checking

For accurate grammar correction, a well-crafted system prompt will be used to instruct the

model.

Grammar Checking Process

1. The user submits text input.

2. The backend prepares a structured system prompt that:

• Defines grammar rules.

• Requests suggestions in a JSON format.

• Ensures the output includes both error explanations and corrections.

3. The LLM processes the input and returns a structured response.

4. The backend validates the response before sending it to the frontend.

By optimizing prompt engineering, we ensure that the model provides highly accurate

and context-aware grammar suggestions.

Page 18 of 29

SugarLabs Google Summar of Code 2025

3. Rephrasing for Better Understanding

To make the suggestions more user-friendly, rephrasing and formatting will be applied. This

ensures that users of all literacy levels can easily understand the feedback.

Rephrasing Strategy

• We will use template-based prompting to instruct the model on how to rewrite sugges-

tions.

• The ChatPromptTemplate from LangChain will be used to structure the input prompts.

• The rephrased output will follow a concise yet clear format.

By incorporating context-aware rephrasing, the feedback becomes more accessible and

actionable for users.

4. OutputFixingParser: Ensuring Valid JSON Responses

Since the model generates JSON responses, occasional syntax errors can occur. To handle

this, we will integrate OutputFixingParser from LangChain.

How OutputFixingParser Works

1. The raw JSON response from the model is parsed.

2. If a syntax error is detected, OutputFixingParser:

• Identifies the error.

• Fixes missing/incorrect syntax.

• Returns a corrected JSON output.

3. The backend validates the corrected JSON before sending it to the frontend.

This approach ensures that even if the LLM generates a malformed response, it will be

automatically corrected without affecting system performance.

Integration into Backend

All these components—grammar checking, rephrasing, and JSON validation—will be im-

plemented within the backend as part of a chain of functions.

By leveraging FastAPI, LangChain, and Ollama, we create an efficient, accurate, and

scalable grammar-checking system that provides high-quality suggestions with minimal

processing time.

Page 19 of 29

SugarLabs Google Summar of Code 2025

Logger (Optional but Recommended)

Logging can be a valuable addition to the project, ensuring performance monitoring, debug-

ging, and adherence to Responsible AI guidelines. While we will not log sensitive user data,

such as text inputs or model responses, we can track essential metadata to improve system

efficiency and reliability.

Key Data Points to Log

To monitor the system’s performance and detect potential issues, we can log:

• API call duration – Time taken for each request to be processed.

• Number of requests – Helps track usage patterns.

• Error rates – Identifies recurring failures or bottlenecks.

• Success rate – Measures the accuracy and efficiency of the model.

Recommended Logging Methods

LangSmith LangSmith is a specialized logging library designed for AI workflows and LangChain

models. It integrates seamlessly with LangChain pipelines and provides detailed insights

into model performance, API calls, and errors. Key advantages include:

• Easy integration using function decorators.

• Structured logging for tracking AI interactions.

• Visualization and monitoring of model behavior.

Python’s Built-in logging Module The Python logging module is a lightweight, flexible,

and customizable option for logging metadata. It supports various logging levels (INFO,

DEBUG, ERROR, WARNING, CRITICAL) and allows:

• Simple implementation with minimal dependencies.

• Custom log formatting to capture key details.

• Storage flexibility, including console output or file logging.

By implementing an efficient logging system, we can enhance observability, trou-

bleshoot issues faster, and optimize system performance, ensuring a robust and scalable

solution.

Page 20 of 29

SugarLabs Google Summar of Code 2025

Deployment

For deployment, we will use an ASGI server recommended by FastAPI DOCS, such as Uvicorn

or Hypercorn, to run the backend efficiently.

The backend will follow the structure of Sugar-AI and be containerized using Docker

for portability and scalability. We will utilize the Ollama container from Docker Hub to

streamline AI model management.

The system can be deployed on cloud platforms (AWS, Azure, GCP), virtual machines,

or local environments, ensuring flexibility and ease of maintenance.

Tests (Optional)

Given the extensive range of activities in Sugar-AI, maintaining code quality across all func-

tionalities can be challenging. To ensure the system operates reliably and meets project

requirements, implementing automated testing can significantly reduce the burden of man-

ual verification while improving overall stability.

Since the codebase for individual activities is relatively small, it can be efficiently tested.

We will utilize pytest, a powerful and flexible testing framework, to write unit tests and

integration tests. Unit tests will verify the functionality of isolated components, while

integration tests will ensure smooth interaction between different parts of the system.

By incorporating a structured testing approach, we can enhance code reliability, detect

issues early, and streamline the development process while maintaining high performance

across all activities.

Page 21 of 29

https://fastapi.tiangolo.com/deployment/manually/#use-the-fastapi-run-command

SugarLabs Google Summar of Code 2025

ARCHITECTURE

Figure 5: Architecture

PROTOTYPE

The prototype’s development journey is thoroughly documented in the project’s GitHub

README, detailing its architecture, functionality, and implementation process. Incremental

progress is transparently showcased through commit history and demonstration videos,

providing a clear view of its evolution.

Code Repository: GitHub - sugarlabs-proto

Development Iterations:

• Iteration 1: Watch on YouTube

• Iteration 2: Watch on YouTube

• Iteration 3: Watch on YouTube

IMPACT

1. Enhancing Learning for Children

This project will transform the way children interact with the Write activity by providing

real-time grammar correction and explanations. Instead of simply fixing errors, it will:

Page 22 of 29

https://github.com/t-aswath/sugarlabs-proto
https://youtu.be/FP7PB_yGwtI
https://youtu.be/g9cTgEII5sc
https://youtu.be/bcr_ln06yr8

SugarLabs Google Summar of Code 2025

• Encourage learning by explaining why a correction is needed.

• Improve writing skills through interactive suggestions.

• Boost confidence in language proficiency by offering a supportive AI-powered assis-

tant.

By making grammar correction a learning experience, children will develop stronger

writing skills in a fun and engaging way.

2. Strengthening Sugar Labs’ Educational Tools

This project aligns with Sugar Labs’ mission of enhancing digital learning by:

• Expanding the capabilities of the Write activity.

• Introducing a modular AI component that can be reused across other activities.

• Improving accessibility and inclusivity by helping children of all literacy levels enhance

their writing skills.

3. Advancing Open-Source AI in Education

By integrating AI-powered language processing into Sugar Labs, this project will:

• Contribute a scalable, reusable AI module to the open-source community.

• Demonstrate how AI can be used for education in a way that prioritizes learning over

automation.

• Set the foundation for future AI-powered educational tools within Sugar.

By bridging the gap between AI and education, this project will have a lasting impact on

how children learn and interact with digital tools within Sugar Labs.

POST-GSOC PLANS & FUTURE OF THE PROJECT

1. Long-Term Sustainability & Maintenance

After GSoC, I plan to ensure the project remains maintainable, scalable, and adaptable by:

Page 23 of 29

SugarLabs Google Summar of Code 2025

• Actively contributing to the Sugar Labs community to refine and improve the AI

module.

• Providing thorough documentation to make it easier for future developers to enhance

the system.

2. Future Enhancements & Improvements

While the current implementation focuses on real-time grammar correction and learning,

there is immense potential to expand the project further:

1. Multilingual Support

• Expanding beyond English to assist children in learning and improving multiple

languages.

• Incorporating translation and grammar correction for various linguistic back-

grounds.

2. Adaptive Learning

• Implementing an AI-driven personalized learning experience that adjusts sug-

gestions based on a child’s writing habits.

• Introducing difficulty levels to help students progressively improve their skills.

3. My Continued Contribution

I am committed to continuing my involvement with Sugar Labs even after GSoC by:

• Helping onboard new contributors to maintain and expand the AI module.

• Optimizing the AI model by experimenting with new LLMs and fine-tuning for better

accuracy.

This project is just the beginning of AI-powered learning within Sugar Labs. With contin-

uous enhancements, it has the potential to become a core educational tool that empowers

children worldwide to improve their writing skills in a fun and interactive way.

Page 24 of 29

SugarLabs Google Summar of Code 2025

TIMELINE

Community Bonding Period

• Get familiar with the Sugar Labs ecosystem, its codebase, and development workflows.

• Engage with mentors and contributors.

• Finalize the technical design and discuss any modifications with the community.

• Set up the development environment and define test cases for grammar correction.

Week 1-2: Initial AI Module Setup & Experimentation

• Explore and benchmark various LLMs for grammar correction.

• Integrate LangChain and structure the AI pipeline.

• Implement a basic API using FASTAPI for grammar correction.

• Conduct unit testing to validate LLM responses.

Week 3-4: API Development & Dockerization

• Finalize the best-performing LLM for grammar correction.

• Implement a robust FASTAPI route to handle text correction requests.

• Dockerize the AI module for easy deployment and integration.

• Set up logging mechanisms to track API usage and interactions.

• Conduct initial API testing to ensure stability.

Week 5: Midterm Evaluation & UI Integration Begins

• Submit work for midterm evaluation.

• Start integrating the Write activity with the AI module via API calls.

• Implement event listeners in the text area to capture user activity.

• Develop a debouncing mechanism to prevent redundant API calls.

Page 25 of 29

SugarLabs Google Summar of Code 2025

Week 6-7: UI Improvements & Real-Time Feedback

• Apply styles and highlights to mark grammar mistakes.

• Display suggestions and reasoning within the Write activity.

• Implement interactive elements for user engagement (e.g., tooltips, pop-ups).

• Conduct integration testing between the Write activity and AI module.

Week 8: Advanced Features & Performance Optimization

• Implement an interception mechanism to cancel redundant backend computations.

• Optimize response times and improve model efficiency.

• Refine the auto-complete feature to suggest grammatically correct text.

• Test UI responsiveness across different screen sizes.

Week 9: Extensive Testing & Bug Fixes

• Perform end-to-end testing covering unit, API, and UI functionality.

• Gather feedback from mentors and the community for final improvements.

• Fix bugs, optimize performance, and polish the overall experience.

Week 10: Final Refinements & Documentation

• Finalize all code, documentation, and tutorials.

• Submit the project for final evaluation.

• Write a blog post/demo showcasing the project’s impact.

• Discuss post-GSoC plans with the community for future improvements.

Page 26 of 29

SugarLabs Google Summar of Code 2025

RESEARCH

Understanding Grammarly’s Approach

To gain insights into how Grammarly achieves effective grammar correction with minimal

input lag, I studied the following resources:

• ACL Anthology: Automated Grammar Error Correction

• Grammarly’s Engineering Blog: Reducing Text Input Lag

• How Grammarly Works

• Grammarly’s NLP Approach for Run-on Sentences

• How Grammarly Uses AI

Building a Custom Grammar Correction Tool

To develop our own AI-driven grammar correction tool, I researched methodologies and best

practices:

• How to Build a Grammar Checker Like Grammarly

• Creating a Custom AI-Based Grammar Checker

Existing Grammar Correction Tools & Comparisons

To evaluate different approaches and understand their strengths, I reviewed various existing

tools:

• Ginger Software

• Zoho Writer Grammar Checker

• GrammarCheck

• TutorBin Grammar Checker

Page 27 of 29

https://aclanthology.org/W18-6105.pdf
https://www.grammarly.com/blog/engineering/reducing-text-input-lag/
https://www.grammarly.com/blog/product/how-does-grammarly-work/
https://www.grammarly.com/blog/company/nlp-run-on-sentences/
https://www.grammarly.com/blog/product/how-grammarly-uses-ai/
https://www.matellio.com/blog/app-like-grammarly/
https://nkumarvishnu5.medium.com/ai-in-the-real-world-3-make-your-own-grammarly-36348d3f1c62
https://www.gingersoftware.com/
https://www.zoho.com/writer/free-grammar-checker.html
https://www.grammarcheck.net/
https://tutorbin.com/grammar-checker

SugarLabs Google Summar of Code 2025

Relevant Past GSoC Projects from Sugar Labs

Studying past GSoC projects provided valuable insights into Sugar Labs’ development stan-

dards and best practices:

• AI Chatbot Integration for Chat Activity

• Pippy Activity Enhancements

• Sugar Labs GSoC Archive

Technologies

Extensive research was conducted to identify the most suitable methods and functions

required to implement the desired functionality effectively. The following technologies

played a crucial role in shaping the prototype:

• GTK: – Used for building the graphical user interface.

• LangChain: – Utilized for constructing AI-powered language processing workflows.

• FastAPI: – Enabled the creation of a high-performance API for model interaction.

• Pydantic: – Ensured robust data validation and type enforcement in API requests.

• LangSmith: – Assisted in debugging, monitoring, and optimizing language model

pipelines.

CONCLUSION

I am confident in my ability to successfully execute this project and deliver a high-quality,

AI-powered grammar correction tool for Sugar Labs. With my experience in AI, LangChain,

API development, and system architecture, I have the technical expertise required to build

an efficient and scalable solution.

Beyond technical skills, I have a strong background in open-source development and

community-driven projects, ensuring that my work aligns with Sugar Labs’ values and

standards. My commitment to clean, maintainable, and well-documented code will make

this project not only impactful in the short term but also sustainable for future contributors.

I am highly dedicated, adaptable, and open to feedback, ensuring smooth collaboration

with mentors and the community. My structured approach, clear milestones, and regular

Page 28 of 29

https://github.com/sugarlabs/GSoC/blob/master/archives/2024/student-reports/Add_an_AI_chatbot_to_the_Chat_Activity_Qixiang_Wang.md
https://github.com/kshitijdshah99/Pippy_Activity?tab=readme-ov-file
https://gist.github.com/khadar1020/79d68a2bd2ca2c0644a56e7bf2240180
https://docs.gtk.org/gtk3/
https://python.langchain.com/docs/introduction/
https://fastapi.tiangolo.com/
https://docs.pydantic.dev/latest/
https://docs.smith.langchain.com/

SugarLabs Google Summar of Code 2025

progress updates will ensure the timely completion of the project while maintaining high

quality.

By integrating real-time AI-assisted grammar correction, this project will significantly

enhance the learning experience for children, empowering them to write confidently and

improve their language skills in an interactive way. I am excited about this opportunity to

contribute to Sugar Labs and make a lasting impact on education through AI.

Page 29 of 29

	About Me
	Previous Works
	Open Source
	Meetings
	Bitspace
	Projects

	Availability
	Project Details
	Solution
	Project Overview
	Deliverables

	Design
	Design - I
	Design - II
	Indicator
	Test Mode

	Tech Stack
	Implementation
	UI
	Frontend
	Backend
	Model Selection and Processing
	Logger
	Deployment
	Tests

	Architecture
	Prototype
	Impact
	Enhancing Learning for Children
	Strengthening Sugar Labs' Educational Tools
	Advancing Open-Source AI in Education

	Post-GSoC Plans & Future of the Project
	Long-Term Sustainability & Maintenance
	Future Enhancements & Improvements
	My Continued Contribution

	Timeline
	Community Bonding Period
	Week 1-2
	Week 3-4
	Week 5
	Week 6-7
	Week 8
	Week 9
	Week 10

	Research
	Understanding Grammarly’s Approach
	Building a Custom Grammar Correction Tool
	Existing Grammar Correction Tools & Comparisons
	Relevant Past GSoC Projects from Sugar Labs
	Technologies

	Conclusion

