

Sugar Labs
Google Summer of Code 25’

Project Information
Interactive AI-powered Chatbot and Debugger for Music Blocks

Length: 350 Hours
Mentor: Walter Bender

Assisting Mentor: Devin Ulibarri

Student Information
Full Name: Amrit Rai

Email: iamamrit27@gmail.com
Github: github.com/retrogtx

LinkedIn: linkedin.com/in/amritwt
X (Formerly Twitter): x.com/amritwt

Preferred Language: Proficient in English
Location: Navi Mumbai, Maharashtra, India

Timezone: IST (UTC +5:30)
Phone: +91 7900064577

Institution: Terna Engineering College
Program: Electronics and Telecommunication

Expected year of graduation: 2026

About
Being into code for a brief period of time, open source is something that affected my
life without me even knowing about it. It felt amazing to me that I could contribute to
stuff that could be used by people.

My programming journey started back in 2020 when I made ML models with
PyTorch, and learnt about core classical ML. It was an amazing experience.

Over time I wished to make the product side of things, so I pivoted to fullstack
engineering. This was key as I could ship something daily. With project based
learning, I could just build things I wish that existed.

In November 2024, I got a grant of $3000 by the Solana Foundation for solving
inheritance on Solana, a way to prevent dead wallets and pass on crypto to your
loved ones. This was a great time for me to get my hands dirty with Rust.

In January 2024, I got into Cal - an open source scheduling software. I've been an
intern here for the past one month. The things I have learnt here have shaped me
better as an engineer. I write tests, implement features, and review code by other
folks from open source. And read code all the time.

On the side, I try to be better at algorithms so the best way to do so is getting hands
on competitive programming. Still an 893 rated newbie though.

I try to help others in the community through my small twitter presence.

mailto:iamamrit27@gmail.com
http://github.com/retrogtx
http://linkedin.com/in/amritwt
http://x.com/amritwt

Tech Stack
I am generally tech stack agnostic, picking up whatever I need to achieve what the
problem needs of me. However I am experienced with all these technologies:

Programming Languages: Python, Javascript, Typescript, C++
Core Libraries: NextJs, React, Express, Pytorch, Flask, FastAPI, Drizzle
State Management: Recoil Js, Zustand
Databases: PostgreSQL
Tools: Git, Github, AWS, Docker, CI/CD, Supabase

My tech stack has evolved over the years, when I first started with ML it was mostly
about Python, pytorch and other libraries for data science like pandas and matplotlib

For my grant project I worked deeply with Rust, Anchor and Solana/Web3.js

For my day to day projects, it’s all about Typescript (or Javascript)

I pick things up as required. But by experience wise, I have listed everything above!

Why Sugar Labs?

When I first started to learn how websites on the internet are built, I started to learn
HTML. Then overtime I wished to learn React. My teacher told me to go deeper into
DOM manipulation. This is when I got deeper into Music Blocks. This was a great
way for me to learn about DOM manipulation, and to see what a full fledged project
with vanilla Javascript looks like.

As a fellow music enthusiast, it was nice to see that there is an app out there that
helps kids learn better about music.

By diving deeper, I found the way it works was remarkable. Just a huge codebase
with javascript running. I started playing around from day one. Figured out what part
of this huge might be nonoptimal and started contributing code to solve the same.

Contributions were one part, but I have also been active in the community, helping
with small stuff here and there.

I don’t just contribute; I often actively participate in the community, sharing ideas and
working together on solutions at times.

Issues Raised

[feat]: Add Dark Mode (#4195)
 Musicblocks was light mode only.

Dark mode was added in subsequent PRs
by the community.

Pull Requests

 calling every possible direction from a single const row (merged)

Streamline Drum Name for early return of drum post http match, use
object lookup (merged)

move all saved state into a single object (merged)

refactor: simplify note processing logic, remove an empty file (merged)

todo: apply array destructuring (merged)

split notation mappings into separate Octaves (merged)

fix #2630: Add jsdoc style documentation (merged)

Fixes: #4056 correcting highlight problem near nav-bar (merged)

Increasing the size of chord pie menu (merged)

Fixes: #4056 correcting highlight problem near nav-bar (merged)

refactor: use better mapping logic in _setupBlocksContainerEvents
(merged)

fix: base64encode error warning, extraction of common logic into a
single function (merged)

https://github.com/sugarlabs/musicblocks/issues/4195
https://github.com/sugarlabs/musicblocks/pull/4042
https://github.com/sugarlabs/musicblocks/pull/4008
https://github.com/sugarlabs/musicblocks/pull/4008
https://github.com/sugarlabs/musicblocks/pull/3998
https://github.com/sugarlabs/musicblocks/pull/3991
https://github.com/sugarlabs/musicblocks/pull/4232
https://github.com/sugarlabs/musicblocks/pull/4090
https://github.com/sugarlabs/musicblocks/pull/4066
https://github.com/sugarlabs/musicblocks/pull/4057
https://github.com/sugarlabs/musicblocks/pull/4060
https://github.com/sugarlabs/musicblocks/pull/4057
https://github.com/sugarlabs/musicblocks/pull/4039
https://github.com/sugarlabs/musicblocks/pull/4036
https://github.com/sugarlabs/musicblocks/pull/4036

fix renderLanguageSelectIcon logic (merged)

fix all eslint errors along with base64encode error (merged)

FIXME: Implement pickup measures and multi-voice support in abc.js
(merged)

Streamline Drum Name for early return of drum post http match, use
object lookup (merged)

use object lookup for convertDuration instead of switch (merged)

fix all lint + Base64Encode errors (merged)

use object lookup for convertDuration instead of switch (merged)

move all saved state into a single object (merged)

used regex to minimize code (merged)

add export statements for BACKWARDCOMPATIBILIYDICT and
initBasicProtoBlocks (merged)

Update drum block setup by combining everything into a list (merged)

refactor: Simplify note processing logic, remove an empty file (merged)

https://github.com/sugarlabs/musicblocks-v4/pull/415 (not merged)

A full list can be found here.

And many instances where I have helped with reviewing
and more just by lingering around :D

https://github.com/sugarlabs/musicblocks/pull/4031
https://github.com/sugarlabs/musicblocks/pull/4030
https://github.com/sugarlabs/musicblocks/pull/4020
https://github.com/sugarlabs/musicblocks/pull/4008
https://github.com/sugarlabs/musicblocks/pull/4008
https://github.com/sugarlabs/musicblocks/pull/4003
https://github.com/sugarlabs/musicblocks/pull/4015
https://github.com/sugarlabs/musicblocks/pull/4003
https://github.com/sugarlabs/musicblocks/pull/3998
https://github.com/sugarlabs/musicblocks/pull/3996
https://github.com/sugarlabs/musicblocks/pull/3994
https://github.com/sugarlabs/musicblocks/pull/3994
https://github.com/sugarlabs/musicblocks/pull/3992
https://github.com/sugarlabs/musicblocks/pull/3991
https://github.com/sugarlabs/musicblocks-v4/pull/415
https://github.com/sugarlabs/musicblocks/commits/master/?author=retrogtx

Previous Contributions in Open Source

A contributor at Cal.com

When I first started to code back in 2020, I was a machine learning engineer,
making stuff here and there. Over time I wanted to work and be at the product
side of things. Build stuff that people could use. So I started with fullstack
engineering. I also participated at hackathons, and there I came across Cal - a
meeting scheduling company that helps in connecting professionals,
companies and people in general by managing their time for them. That is the
first time I used it.

Then I came to know that the app I use right now is open source. I made
some commits, hopped on a call. In the meantime I got a grant project I
started working on. Then moving forward in January, I was offered an
internship that would start in February. Since then I have made high impact
PRs, but also small fixes that would help the team move forward quicker.

It started from February, and will go on till the end of May. I have since then
reviewed other PRs from people too. To check every person making a PR is
something that makes me better as a programmer because I get to read a lot
of code, and how it impacts the rest of the codebase. Got an internship here!

As of 3rd March, one month of internship has passed.
These are the number of contributions I have made:

Through this, I get to play around with NextJS, TRPC, Docker, Turborepo and
many other technologies that is required at a production grade application

I hope that I can transfer my skill set to build great stuff at Sugar Labs as
much as possible.

http://cal.com

Eternal Key

I built eternal key, after pondering over the question that Satoshi Nakamoto
(inventor of Bitcoin) wanted the world to have a decentralised financial
system. But there are only 22M of them, out of which there’s many that are
lying around in wallets of people who might not be alive, making the wallets
inactive. The BTC is then wasted, right?

Ideally, we should have a way to inherit crypto but we do not. This is odd as
after a point, there will be more wasted currencies on the blockchain than the
ones in supply over a longer time horizon.

Building on this idea, I began to reflect on how, from the very creators of
cryptocurrencies to individuals like us who hold them, there is no clear way to
pass these assets down to future generations.

Consider this scenario: What if the original creators of a cryptocurrency, such
as Satoshi Nakamoto, were to suddenly pass away? The crypto holdings they
accumulated would essentially remain locked in a digital vault, inaccessible to
anyone else. But what if there was a desire to pass on these assets? Simply
sharing the seed phrase with someone is risky and impractical. Storing the
seed phrase in a bank? That could easily lead to theft or loss. So, why not
leverage the blockchain itself to solve this problem?

By utilizing the blockchain, we could create a system where ownership and
access rights are secure, transparent, and potentially inheritable. This would
enable us to not only protect the value of these assets but also ensure that
they can be passed on safely, even if something were to happen to the
original owner. The question becomes: how can we integrate these principles
into the existing blockchain infrastructure to create a secure, decentralized
inheritance system for cryptocurrency assets?

My project got funded by the Solana Foundation because it solves exactly
this. A way to inherit crypto, in less that 6 clicks you can choose who will
inherit your crypto after some period of time passes.

I also wrote a detailed blog about this!

This project will be important in the coming years.

https://eternalkey.xyz
https://eternalkey.xyz
https://amritwt.me/blog/how-to-inherit-crypto

Some Personal Projects
[Related to ML models]

Attention Is all you need

The paper that started it all, an implementation. LLMs that we use day to day,
have originated because of this. The core idea of the transformer model is the
attention mechanism, which allows the model to weigh the importance of
different words in a sentence relative to each other, regardless of their
distance. The self-attention mechanism computes a representation of the
input sequence by attending to all positions simultaneously. This is in contrast
to RNNs or Long Short-Term Memory (LSTM) networks, which process inputs
sequentially and struggle with long-range dependencies. By utilizing this
attention mechanism, transformers can capture complex relationships within
the data more efficiently.

Scene AI

A SaaS I tried to build that uses a fine tuned open source model replicate to
remove backgrounds from a video, with everything implemented from S3
storage, authentication and a payment method too. Let me know if you wish to
try it out, I’ll get you some free credits! The link.

Many more great projects on my github!

https://scene-ai.amritwt.me/
https://github.com/retrogtx

The project that I deeply wish to work on

Interactive AI powered Chatbot and Debugger for Music Blocks

In an era where educational technology is rapidly transforming how young
minds interact with and learn complex subjects, Music Blocks stands out as a
dynamic platform that marries creativity with blocks to explore the fascinating
world of music. This project envisions a groundbreaking enhancement: the
integration of an AI-powered chatbot and a robust project debugger into the
Music Blocks environment. By leveraging LLaMA (or any other open source
model you guys recommend), an innovative open-source language model
celebrated for its adaptability and high performance, our initiative seeks to
empower users with immediate, context-aware assistance and detailed
troubleshooting capabilities. Imagine a system where students, regardless of
their technical proficiency, can not only receive intuitive guidance while
navigating Music Blocks' diverse functionalities but also gain insightful,
step-by-step debugging support that clarifies the intricate logic behind their
projects. This synergy of creative exploration and technical refinement will not
only lower the barrier to entry for newcomers but also offer seasoned users a
richer, more engaging experience. Embracing the open-source philosophy of
the Sugar Labs community, our proposal aims to set a new standard for
interactive learning environments—one where technology and art converge
seamlessly to foster a deeper understanding of music, coding, and digital
creativity. It’ll be a great chatbot. And a debugger.

1. Project Overview

Objective:
 Enhance Music Blocks by integrating an AI-powered chatbot and a project
debugger. These tools will:

● Assist Beginners: Provide real-time help, answer questions, and
explain features.

● Support Advanced Users: Offer debugging insights to resolve issues
in project logic and block connections.

Key Technologies:

● Programming Language: Python
● Frameworks: FastAPI for API endpoints
● Platforms: AWS for deployment
● Core Idea: Open-source LLMs, Retrieval-Augmented Generation

(RAG), Chatbots, and Debugging Tools

2. Detailed Breakdown

A. Research and Analysis Phase

● Understand Music Blocks:
○ Study the existing codebase and typical project structures.
○ Identify common user errors and debugging challenges.

● Review AI Chatbots and Debuggers:
○ Analyze similar projects and approaches for integrating AI into

creative platforms.
○ Determine the best practices to ensure usability and accuracy.

B. Architecture Design

● System Architecture:
○ Modules: Define separate components for the AI chatbot, project

debugger, and API layer.

○ Data Flow: Map out how data moves between Music Blocks, the
LLM, and the front-end interface.

● Model Selection & Customization:
○ Choose an open-source LLM as the base model.
○ Outline plans to fine-tune the model on Music Blocks-specific

data.
● Integration Strategy:

○ Use FastAPI to create RESTful endpoints for real-time
interactions.

○ Design the interface to be easily integrated into the existing Music
Blocks environment.

● AWS Deployment:
○ Plan for scalable deployment on AWS to handle inference

requests.
○ Define monitoring and scaling strategies for the API.

C. LLM Training and Retrieval-Augmented Generation (RAG)

● Data Collection:
○ Gather Music Blocks project data, error logs, and user

interactions.
○ Collaborate with the Sugar Labs community to obtain diverse

use-case scenarios.
● Training Strategy:

○ Fine-tune the selected open-source LLM on the collected data.
○ Implement a RAG pipeline to enhance contextual understanding

and mitigate hallucinations.
● Accuracy Enhancements:

○ Incorporate techniques (e.g., controlled generation, iterative
feedback loops) to minimize hallucinations.

○ Set up evaluation metrics to continuously monitor model
performance.

D. AI Chatbot Integration

● Functionality:
○ Answer user queries about Music Blocks features and common

issues.
○ Offer creative suggestions to inspire new projects.

● User Interface (UI):
○ Design an intuitive UI/UX integrated within Music Blocks.
○ Ensure the chatbot is easily accessible and interactive.

● Real-time Assistance:
○ Implement dynamic response generation using the fine-tuned

LLM.
○ Utilize RAG to fetch contextually relevant documentation and help

resources.

E. Project Debugger Development

● Error Identification:
○ Develop algorithms to analyze project structures and block

connections.
○ Detect common errors or misconfigurations in Music Blocks

projects.
● Debugging Assistance:

○ Provide step-by-step suggestions to resolve detected issues.
○ Create visualization tools to help users understand debugging

outputs.
● Integration with Chatbot:

○ Allow the chatbot to trigger debugging sessions.
○ Offer a seamless transition between chat-based guidance and

detailed debugging information.

F. API Development with FastAPI (If not, we can proceed with a Node Js
API too!)

● Endpoint Design:
○ Develop RESTful endpoints for chatbot interactions and debugger

functions.
○ Ensure secure, efficient communication between the client (Music

Blocks UI) and server.
● Backend Integration:

○ Integrate the LLM model and debugging logic within the FastAPI
framework.

○ Prepare endpoints for model inference, error reporting, and
feedback collection.

● Performance Optimization:
○ Optimize API responses to ensure minimal latency, especially for

real-time interactions.
○ Implement caching and load balancing strategies where

necessary.

G. Testing, Evaluation, and Iteration

● Unit and Integration Testing:
○ Develop comprehensive tests for each module (LLM, API,

debugging tool).
○ Validate correct error detection and appropriate chatbot

responses.
● User Feedback:

○ Run beta tests with community members.
○ Gather feedback and iterate on features to improve usability and

accuracy.
● Performance Metrics:

○ Establish metrics for response time, debugging success rates,
and overall user satisfaction.

○ Continuously monitor and adjust the system based on these
metrics.

H. Documentation and Deployment

● Documentation:
○ Create developer and user guides detailing system architecture,

API usage, and integration instructions.
○ Provide tutorials and examples to help new users and

contributors.
● AWS Deployment (If we use it):

○ Finalize deployment on AWS, ensuring scalability, reliability, and
cost-efficiency.

○ Set up monitoring dashboards and logs to track system
performance.

● Community Engagement:
○ Share documentation and deployment strategies with the Sugar

Labs community.
○ Encourage contributions and collaborative improvements.

3. Timeline and Milestones

1. Community Bonding Phase (Weeks 1–4):

○ Engage with the Sugar Labs community and Music Blocks users.
○ Refine project objectives and gather initial requirements.
○ Set up a development environment and preliminary project

planning.
2. Design Phase (Weeks 5–8):

○ Finalize system architecture and module designs.
○ Define API specifications and integration points.
○ Prepare datasets for LLM training.

3. Development Phase (Weeks 9–20):
○ LLM Training & RAG Implementation:

■ Fine-tune the model and set up the RAG pipeline.
○ Chatbot and Debugger Development:

■ Build the core functionalities and integrate into Music
Blocks.

○ FastAPI Endpoint Development:
■ Develop and test API endpoints for real-time interaction.

4. Testing and Iteration (Weeks 21–24):
○ Conduct unit and integration testing.
○ Beta test with users and collect feedback.
○ Optimize performance and address detected issues.

5. Final Deployment and Documentation (Weeks 25–26):
○ Finalize documentation and user guides.
○ Deploy the solution on AWS (if we are going to use it).
○ Wrap up the project, present results, and prepare for potential

future enhancements.

4. Risks and Mitigation Strategies

● Data Scarcity for LLM Training:
○ Mitigation: Collaborate with the community to source diverse

project examples and error logs.
● Model Hallucinations and Inaccuracies:

○ Mitigation: Use RAG and iterative fine-tuning; incorporate user
feedback for continuous improvement.

● Integration Challenges with Existing Music Blocks Codebase:
○ Mitigation: Maintain active communication with core developers;

implement incremental integration and testing.

● Scalability Issues in API Deployment:
○ Mitigation: Leverage AWS services for auto-scaling and

performance monitoring.

5. Expected Outcomes

● Enhanced User Experience:
○ A robust AI chatbot that provides real-time assistance and

creative suggestions.
● Efficient Debugging:

○ An integrated debugger that simplifies error resolution in Music
Blocks projects.

● Increased Accessibility:
○ Lower barriers for beginners and a more streamlined workflow for

advanced users.
● Community Contribution:

○ Open-source contributions back to the Sugar Labs and Music
Blocks projects, to fix bugs and other issues.

Deliverables

This project is designed to deliver a comprehensive, state-of-the-art
enhancement to the Music Blocks platform by integrating a finely tuned

LLaMA-based AI, an intelligent chatbot, and an advanced project debugger.
The deliverables span from the granular technical components to high-level
community resources, ensuring that every aspect of the system is robust,

scalable, and tailored for both novice and advanced users.

1. LLaMA Fine-Tuned Model for Music Blocks

Outcome:
 A customized version of the LLaMA open-source language model, fine-tuned
specifically on Music Blocks data, capable of understanding and generating

context-aware responses to project-related queries and debugging scenarios.

Implementation Details:

● Data Aggregation & Preprocessing:
○ Source Datasets: Collect a wide variety of Music Blocks project

code, user interaction logs, and error reports from the Sugar Labs
community.

○ Training Setup: Utilize state-of-the-art frameworks (e.g., Hugging
Face Transformers) to fine-tune LLaMA. Experiment with
hyperparameters such as learning rate schedules, batch sizes,
and gradient accumulation steps to optimize performance.

○ Retrieval-Augmented Generation (RAG): Integrate a RAG
pipeline by indexing a curated knowledge base. This enhances
the model’s ability to retrieve accurate and contextually relevant
data during real-time interactions.

2. AI-Powered Chatbot Integration

Outcome:
 A dynamic, interactive chatbot embedded within Music Blocks, providing

users with real-time assistance, feature explanations, and creative guidance.

Implementation Details:

● Chatbot Architecture:
○ Core Engine: Leverage the fine-tuned LLaMA model as the

backbone for natural language understanding and generation.

○ Dialogue Management: Design a conversation flow system that
can handle multi-turn interactions, maintaining context across
sessions.

○ Context-Aware Responses: Utilize the RAG framework to fetch
context-specific documentation, ensuring that responses are not
only accurate but also actionable.

● User Experience (UX):
○ Interface Design: Develop a seamless and intuitive UI module

within Music Blocks, using modern web frameworks. Prioritize
responsiveness and ease-of-use with adaptive design for various
devices. I am great with frontends too, so this will be great as
well.

3. Project Debugger

Outcome:
 An integrated debugger that can automatically analyze Music Blocks projects,

identify syntax and logic errors, and provide step-by-step troubleshooting
guidance. This will be a tough one.

Implementation Details

● Error Detection Algorithms:
○ Static Analysis: Develop static code analysis tools tailored for

Music Blocks block-based projects. Identify common pitfalls such
as misconfigured block connections and inconsistent variable
use.

○ Dynamic Analysis: Simulate project execution in a sandbox
environment to detect runtime errors, enabling the system to
capture both compile-time and execution issues.

○ Pattern Recognition: Leverage machine learning techniques to
recognize recurring error patterns, enhancing the model’s
predictive capabilities in identifying potential issues.

● Debugger Interface:
○ Visual Feedback: Create interactive visualizations that map out

project structures, highlighting problematic areas and offering
visual cues for resolution.

○ Integration with Chatbot: Enable the chatbot to initiate
debugging sessions automatically when users describe issues,
creating a seamless troubleshooting experience.

4. FastAPI Endpoints and Backend Integration

Outcome:
 A robust set of RESTful API endpoints that allow seamless communication
between the Music Blocks front-end, the LLaMA-powered chatbot, and the

debugging module.

Implementation Details:

● API Design and Development:
○ Endpoint Specification: Design endpoints for key functionalities

such as chat interactions, debugging queries, error logging, and
user feedback.

○ Error Handling & Logging: Build comprehensive error handling
routines and logging mechanisms to track API usage and identify
bottlenecks.

5. Comprehensive Documentation and Community Resources

Outcome:
 A complete set of technical documentation, user guides, and community

resources that empower developers and users alike to understand, deploy,
and extend the project.

Implementation Details:

● Technical Documentation:
○ Architecture Blueprints: Provide detailed diagrams and

technical write-ups covering the system architecture, data flows,
and module interactions.

○ API Guides: Develop comprehensive guides and code examples
for integrating and interacting with the FastAPI endpoints.

○ Training Manuals: Document the LLaMA fine-tuning process,
including data preparation, model training, evaluation, and
deployment instructions.

● FAQs & Troubleshooting Guides: Develop a robust FAQ section
addressing common user issues and providing troubleshooting tips if we
find any along the way.

● Open-Source Contribution Guidelines (If needed):
○ Contribution Roadmap: Outline clear guidelines for external

contributions, including code standards, pull request procedures,
and issue tracking.

Final Thoughts

Each deliverable in this project is carefully designed to create an integrated,
intelligent, and user-friendly system that elevates the Music Blocks

experience. By combining LLaMA with robust debugging tools and a scalable
API framework, we not only streamline the learning process but also empower
users to explore and create with confidence. The comprehensive deployment

ensures that this solution remains accessible, high-performing, while
extensive documentation and community engagement foster an ecosystem of

continuous improvement and collaboration. This ambitious yet pragmatic
approach provides the edge needed to set a new standard in educational

technology, delivering tangible benefits to both the Sugar Labs community and
the broader world of interactive learning. Let’s do this!

Impact on Sugar Labs

This project is designed to bring a range of tangible benefits to the Sugar Labs
community and the Music Blocks platform. By adding an AI-powered chatbot
and an integrated debugger, we aim to create a more interactive and
supportive learning environment. Here’s how it will make a difference:

● Enhanced User Support:
 The chatbot will serve as an on-demand assistant that answers
common questions and explains features in real time. For new users,
this means less frustration when they get stuck, and for experienced
users, quicker tips on how to resolve specific issues.

● Improved Debugging Experience:
 Many users face challenges when troubleshooting their Music Blocks
projects. The debugger will analyze project structures and identify
errors, offering clear, step-by-step guidance on how to fix them. This
makes the overall experience smoother and more rewarding.

● Stronger Community Engagement:
 With tools that help users learn and solve problems faster, more people
will feel comfortable experimenting and contributing. This increased
participation can lead to more community-generated enhancements,
fostering an environment where everyone learns from each other.

● Boosting Educational Impact:
 Music Blocks is already a fun way to learn about music and coding. By
integrating intelligent tools that simplify learning and troubleshooting,
Sugar Labs can attract a broader audience—from complete beginners
to seasoned coders—thus reinforcing its mission to provide quality
educational experiences.

● Encouraging Open-Source Contributions:
 The design of the chatbot and debugger is modular, meaning that once
the project is up and running, other community members can easily add
features or improve existing ones. This not only leads to a better
product over time but also reinforces the open-source spirit of Sugar
Labs.

Overall, the project is set to elevate the Music Blocks experience by reducing
barriers to learning, speeding up problem resolution, and creating a vibrant,
collaborative community around educational technology.

Availability

I can dedicate 35-45 hours per week to the project and will be active between
Thursday and Sunday from 9 AM to 9 PM IST. I will have my exams in May-June
period but that will be manageable where I will still dedicate 2-4 hours per day.

Conclusion

In conclusion, this project aims to make a significant impact on the Music
Blocks platform by integrating an AI chatbot and an intelligent debugger.
These tools are not just about adding cool features—they’re about creating an
environment where learning is made easier and more interactive. With
immediate help available via the chatbot and a systematic approach to
troubleshooting through the debugger, users can overcome challenges more
efficiently and feel more empowered in their learning journey.

Moreover, by engaging deeply with the Sugar Labs community throughout the
project, you’re helping to create a culture of continuous improvement and
collaboration. The modular nature of the solution means that once it’s in place,
it will pave the way for further enhancements from both new contributors and
experienced developers alike.

The proposed timeline is designed to be realistic for a college student,
balancing the workload with academic responsibilities while still ensuring the
project is completed within a solid timeframe. Each phase—from initial
planning and research to development, testing, and final deployment—has
been carefully outlined to provide a clear roadmap to success.

Ultimately, this project not only enhances the user experience for Music Blocks
but also reinforces Sugar Labs’ commitment to open-source educational
technology. It’s a step forward in making learning more accessible, fun, and
effective for everyone involved.

Being well versed in technologies and experienced in building projects, I’ll
ensure that we will build something we’d love to use.

Will be glad to be on board, thank you!

	1. Project Overview
	2. Detailed Breakdown
	A. Research and Analysis Phase
	
	B. Architecture Design
	
	C. LLM Training and Retrieval-Augmented Generation (RAG)
	D. AI Chatbot Integration
	E. Project Debugger Development
	F. API Development with FastAPI (If not, we can proceed with a Node Js API too!)
	G. Testing, Evaluation, and Iteration
	H. Documentation and Deployment

	3. Timeline and Milestones
	4. Risks and Mitigation Strategies
	5. Expected Outcomes
	1. LLaMA Fine-Tuned Model for Music Blocks
	2. AI-Powered Chatbot Integration
	4. FastAPI Endpoints and Backend Integration
	5. Comprehensive Documentation and Community Resources
	
	
	Final Thoughts
	Impact on Sugar Labs
	
	Availability

