
Basic Details

• Full Name: Archit Rakeshkumar Agrawal
• Email: architagrawal000@gmail.com
• GitHub Username: https://github.com/architagrawal
• Matrix chatroom: @archit0000:matrix.org
• Your first language: Hindi, Gujarati. I prefer English for communication with community
• Location and Time zone: Tempe, Arizona (MST, GMT-7)
• Share links, if any, of your previous work on open-source projects: I am new to

the open-source community. I take GSOC as an opportunity to get started contributing
my skills for open-source projects.

• Convince us that you will be a good fit for this project, by sharing links to your
contribution to Sugar Labs. https://github.com/sugarlabs/sugar/pull/983

• My Brief Introduction:

o I am currently pursuing my studies in computer science at Arizona State
University, where I've delved deep into AI topics through coursework such as
Data Mining, focusing on various data analysis techniques, and Data Intensive
Systems for Machine Learning, which provided insights into managing ML
systems for Big Data applications. I've closely followed the progress of Large
Language Models on platforms like Hugging Face.

o In my role as a Student Software Developer at ASU, I'm developing a corrective
retrieval-augmented generation (RAG) based chatbot system. This system
empowers faculty members to design courses effectively using technologies like
Python, Langchain, OpenAI, Prompt Flow, and Semantic Kernel. Additionally,
I've designed and implemented APIs and webpages for quiz platforms and
question banks within the ASU Online courses platform, significantly enhancing
the educational experience for students. My hands-on experience and dedication
to staying abreast of emerging technologies position me well to contribute
meaningfully to projects at the intersection of AI and education.

Project Details

• What are you making?

o InfoSlicer serves as an add-on activity for Sugar desktops, offering teachers a
seamless way to create new documents by simply dragging and dropping
content from downloaded Wikipedia articles and subsequently publishing them.

o This summer, my aim is to enhance InfoSlicer by integrating new features that
enable the generation of summaries for both original and edited Wikipedia
articles. Additionally, I plan to implement functionality that allows teachers to
automatically generate lesson plans based on selected themes and the
information extracted from Wikipedia articles. A crucial aspect of these new
features will be the implementation of a validation layer to ensure the accuracy
and reliability of the generated summaries and lesson plans.

• How will it impact Sugar Labs?
o The new features will ease the process for users to create new articles from

existing articles. This promotes collaboration and knowledge-sharing within the
community.

mailto:architagrawal000@gmail.com
https://github.com/architagrawal
http://matrix.org/
https://github.com/sugarlabs/sugar/pull/983

o The integration of the lesson plan feature will aid teachers to create custom
lesson plans based on relevant Wikipedia content, enhancing the educational
experience for teachers and students. This aligns with Sugar Labs' mission of
promoting innovative and accessible educational tools worldwide.

• What technologies (programming languages, etc.) will you be using ?
o UI: GTK3. As the UI for sugar is based on it.
o Vector DB for embeddings: FAISS, Chroma
o LLM: Ollama, Langgraph and Langchain, semantic-kernel and guidance
o Validation and Guardrail the output: Deepeval and guardrail-ai
o Monitor the flow during development: Prompt Flow

• Break down the entire projects into chunks and tell us what will you work on each

week.

o Deliverables:
▪ Interactive widgets facilitating user interaction with the Large Language

Model (LLM) chatbot.
▪ Development of a Free and Open Source (FOS) LLM integrated chatbot

system.
▪ Comprehensive documentation providing a user guide for navigating and

utilizing the chatbot system effectively. This documentation will include
instructions on installation, usage, and troubleshooting to ensure
seamless integration and user satisfaction.

o System Design:

▪ Web Interface: Add two tabs on top using gtk3 and an interface for user

and chatbot interaction.
▪ Agents responsible for each task implemented on langchain and

langGraph. I will also explore semantic kernels and microsoft guidance to
improve the performance in later stages.

▪ A central LLM system that handles the flow of answer generation. The
steps include validating and checking the user request for prompt
injection, classifying the request and getting an answer from relevant

agents, analyzing and aggregating their responses to form an answer,
finally validating the answer using DeepEval and guardrailing for improper
output.

▪ I plan to test some pre-trained LLM available locally through Ollama at
each stage of development and compare overall results.

▪ For privacy concerns, I plan to use FAISS/Chroma as vector databases as
they will be initialized for each session. One drawback is for each source
article, the system will generate embeddings each session

▪ For privacy concerns, I will not be using any databases. No interaction will
be stored between sessions. Drawback of this is, there will be no
possibility of persistent chat and chat history won't be available for users.

o Implementation
▪ Design widgets and an UI for interaction in:

• Summary tab
• Lesson plan tab

▪ Agents responsible for each process:
• Manage articles
• Generate summary
• Create Lesson plan

▪ Develop prompts for LLM to:
• Validate the request for prompt injection and required data,
• Classify and direct the request,
• Summarize documents
• Edit summary
• Create lesson plan
• Edit lesson plan
• Aggregate the response from agents

▪ Validate with deepeval and guardrail the answer with guardrail-ai:
• Define test cases for sample interaction in deepeval
• Define a specific format of answers to be avoided with guardrail ai
• Utilize LLM itself to validate the generated answers

o Timeline
▪ Week 1-2: Implement widgets and basic UI connecting with the LLM

system.
▪ Week 3-4: Load LLM models. Implement request validation and logic to

classify requests.
▪ Week 5-6: Develop prompts for each type of request. Compare and

choose LLM with optimal results.
▪ Week 7-8: Implement agents
▪ Week 9-10: Aggregate responses from agents, validate and guardrail the

output, and connect the chain of thought.
▪ Week 11-12: Test the chatbot, modify and integrate the system, document

setup and usage for users.

• If you will be off-the-grid for a few days, then mention those in the timeline: I have
no other commitments during the GSOC timeline.

• GSoC 2024 has two evaluations, once after every 5 weeks. Highlight the work you
plan to complete before each evaluation. For the first evaluation, I plan to have UI
and a basic chatbot flow ready. Till second evaluation the chatbot system will be ready
and only the final 2 weeks task will be left. Kindly refer to time line.

• How many hours will you spend each week on your project? 40 hours per week
• How will you report progress between evaluations? I will share weekly updates of

my progress on tasks of the week and tasks for the next week through mailing lists. I
will keep in touch with project mentors through matrix and update on each mini-
milestone achieved.

• Discuss your post GSoC plans. Will you continue contributing to Sugar Labs after
GSOC ends? I am interested in working in the edTech space and activities developed
on sugar. Post GSoc, I will be resuming my school. I may find it difficult to dedicate the
same time that I will be in summer, but plan to dedicate at least 10 hours per week to
develop new and interesting functionalities or maintain the projects.

o I would like to look into possibilities to add the activities to sugarizer as it took me
a lot of tries to set up the system locally. Having access on the fly saves hassle
is what I think.

o I see multiple projects that are based on LLM for this GSOC. I am sure different
approaches will be used by contributors, each having a different LLM system.
These systems require a bulky LLM package to be downloaded for each activity
and have a greater system resource usage. Having multiple LLM for different
activities is not feasible for sugar is what I think. I would like to connect all these
activities to a central LLM system post GSOC.

