
Sugar Labs (Sugar)
Institute (SugarLabs) Proposal (GSoC 2024)

Project Title: Add an AI-assistant to the Write Activity
Project Length: 350 Hours
Project Difficulty: Hard
Coding Mentor: Walter Bender
Assisting Mentor: Ibiam Chihurumnaya

https://github.com/sugarlabs/GSoC/blob/master/Ideas-2024.md#Add-an-AI-assistant-to-the-Write-Activity
https://github.com/walterbender/
https://github.com/chimosky/


Name: Soham Sarode

Email: sohamsarode2312@gmail.com

Github Profile: https://github.com/soham2312

First Language: I speak English Proficiently

Location:

Education: Pre-Final Year for BTech CSE (IIIT Jabalpur)

To convince the project team that I'm a good fit for adding an AI

assistant to the Write Activity, I would emphasize the

following points:

1. Expertise in NLP and AI: I possess strong skills in natural

language processing (NLP) I would like to take you to the

personal project of Codeforces Recommendation System and

artificial intelligence (AI), including experience with Hugging

Face for the GPT-2 model in transformers.

2. Technical Proficiency: I am proficient in using tools like

PyTorch, transformers library, and GPT-2 models, as

demonstrated in the provided code snippet. I have

experience working with large language models and

understand their capabilities and limitations.

mailto:sohamsarode2312@gamil.com
https://github.com/soham2312


3. Chatbot Development: I have prior experience in

developing chatbots using TensorFlow, which has given me

insights into creating conversational AI systems.

4. NLP Project Experience: I have worked on natural

language processing projects before, including developing a

recommendation system for Codeforces. This experience has

enhanced my understanding of NLP techniques and their

practical applications.

5. Understanding Project Goals: I have a clear

understanding of the project's objectives, particularly in

enhancing the writing process with grammar correction and

AI-assisted suggestions.

6. Collaborative Approach: I value collaboration, open

communication, and feedback, and I am committed to

working closely with the project team to deliver a

high-quality solution aligned with the project's objectives.

By demonstrating my expertise, technical skills, understanding of

project goals, and collaboration capabilities, I am confident that I

can effectively contribute to adding an AI assistant to the Write

Activity in Write Activity for Sugar.



Sugar Labs Contributions

1. Replaced WebL10n with i18next in FoodChain activity

● Issue: #1378
● Pull request: #1525
● Outdated Localization Framework: The existing localization

framework, WebL10n, in the FoodChain activity, is outdated and
no longer actively maintained, potentially causing compatibility
issues and lacking modern localization features.

● Modernization and Enhancement: Migrating to i18next, an
actively maintained internationalization framework, ensures
modern localization capabilities, ongoing support, and improved
compatibility with evolving technology standards for the
FoodChain activity.

2.Replaced WebL10n with i18next in EbookReader activity

● Issue: #1378
● Pull request: #1531
● Outdated Localization Framework: The existing localization

framework, WebL10n, in the EbookReader activity is outdated
and no longer actively maintained, potentially causing
compatibility issues and lacking modern localization features.

● Modernization and Enhancement: Migrating to i18next, an
actively maintained internationalization framework, ensures
modern localization capabilities, ongoing support, and improved
compatibility with evolving technology standards for the
EbookReader activity.

.

https://github.com/llaske/sugarizer/issues/1378
https://github.com/llaske/sugarizer/pull/1525
https://github.com/llaske/sugarizer/issues/1378
https://github.com/llaske/sugarizer/pull/1531


3.Replaced WebL10n with i18next in MarkDown activity

● Issue: #1378
● Pull request: #1540
● Outdated Framework: The existing localization framework,

WebL10n, in the Markdown activity is outdated and no longer
maintained, potentially leading to compatibility issues and
lacking modern localization features.

● Modernization and Support: Migrating to i18next, an actively
maintained internationalization framework, ensures modern
localization capabilities, ongoing support, and compatibility with
evolving technology standards for the Markdown activity.

Other Organizations Contributions
C2Si Organization

1. Addressing Hardcoded Data and Database Reflection in Backup Email
Component

● Issue: #64
● The issue with the 'backup email' component arises from

hard-coded data and actions not reflecting in the database. A
solution is needed to establish a database connection, fetch
users excluding the logged-in user, and limit the results to four
records.

2. Connecting the Firebase database to the component of 'Backup email' in the
user dashboard

● Issue: #64
● Pull request: #65
● The user has added functionality to the 'backup email'

component connected from the database in the 'Forms'
component and implemented Firebase Database Connection for
the Backup Email Component in the User Dashboard.

https://github.com/llaske/sugarizer/issues/1378
https://github.com/llaske/sugarizer/pull/1525
https://github.com/c2siorg/Codelabz/issues/64
https://github.com/c2siorg/Codelabz/issues/64
https://github.com/c2siorg/Codelabz/pull/65


Stdlib-Js Organization

1. [RFC]: Improve Type Declarations for @stdlib/utils/group-in
● Issue:#1084
● Pull request: #1383, #1435, #1448
● Enhance Type Declarations: Improve TypeScript type

declarations for @stdlib/utils/group-in to address significant type
information loss, currently typed as 'any', when returning
results.

2. [RFC]: Add C Implementation for @stdlib/math/base/special/cot
● Issue:#1663
● ​​Implement Cotangent Function: Add a C implementation for

@stdlib/math/base/special/cot to enhance the standard library's
functionality.

● Function Details: Create stdlib_base_cot, a double-precision
cotangent function that takes a double-precision floating-point
number x as input and returns the cotangent of x.

https://github.com/stdlib-js/stdlib/issues/1084
https://github.com/stdlib-js/stdlib/pull/1383
https://github.com/stdlib-js/stdlib/pull/1435
https://github.com/stdlib-js/stdlib/pull/1448
https://github.com/stdlib-js/stdlib/issues/1663


Project Details

What are you making?

Project Description: Adding an AI assistant to the Write Activity

in Sugar Activities

Overview:

The Write Activity in Sugar Activities provides a platform for peer

editing and collaborative writing. However, it lacks advanced

support for grammar correction and AI-assisted writing, which are

crucial for improving the writing process. This project aims to

enhance the Write Activity by integrating an AI assistant that can

provide feedback on written content and suggest improvements.

Objectives:

● Grammar Correction: Implement grammar correction

functionality using natural language processing techniques to

identify and rectify grammatical errors in the written text.

● AI-Assisted Writing Suggestions: Develop AI models to

analyze the text and provide suggestions for improving

writing style, clarity, and coherence.



● Integration with Write Activity: Integrate the AI

assistant seamlessly into the Write Activity interface,

ensuring a user-friendly experience for writers.

● Workflow Optimization: Optimize the workflow for

grammar correction and writing suggestions to provide

real-time feedback and suggestions as users write.

● Technical Implementation: Python Development: Utilize

Python programming language for implementing natural

language processing algorithms and AI models.

● Sugar Activity Development: Leverage experience with

Sugar activities to integrate the AI assistant into the Write

Activity interface.

● Large Language Models (LLMs) and Chatbots: Utilize

LLMs and chatbot technologies to develop the AI assistant

for grammar correction and writing suggestions.

● Fine-Tuning Models: Fine-tune pre-trained language

models (such as GPT-2) on writing-specific datasets to

improve the accuracy and relevance of suggestions.

● User Experience (UX) Design: Focus on UX design

principles to ensure that the AI assistant seamlessly

integrates into the Write Activity, providing a smooth and

intuitive user experience.



Code Integration:

The provided code showcases the process of importing a

pre-trained GPT-2 language model, fine-tuning it on custom

writing data, and using it to generate text based on given

prompts. This code can serve as a foundation for integrating the

AI assistant's functionality into the Write Activity, specifically for

providing AI assistance.

Challenges:

● Data Privacy and Security: Ensure data privacy and

security measures are in place, especially when processing

user-generated content.

● Model Accuracy: Continuously improve the accuracy and

relevance of AI-assisted suggestions through iterative model

training and testing.

● Real-time Feedback: Implement real-time feedback

mechanisms to provide immediate suggestions as users

write, without impacting performance.

Conclusion:

By adding an AI assistant to the Write Activity in Sugar Activities,

the project aims to revolutionize the writing experience by

offering advanced grammar correction, AI Assisted writing



suggestions, thereby enhancing the overall quality of written

content.

How will it impact Sugar Labs?

Integrating an AI assistant into the Write Activity in Sugar

Acgivities will have a significant impact on user experience,

particularly for children using Sugar Labs' projects:

● Enhanced Learning Experience: Children will have access

to advanced grammar correction and AI-assisted writing

suggestions, promoting better learning outcomes and

improving their writing skills over time.

● Engaging and Interactive: The AI assistant adds an

interactive element to the Write Activity, making writing

more engaging and encouraging children to explore and

express their ideas with confidence.

● Personalized Feedback: The AI-assistant can provide

personalized feedback tailored to each child's writing style

and skill level, creating a supportive environment for

learning and growth.

● Empowering Creativity: By offering suggestions and

corrections, the AI assistant empowers children to be more

creative in their writing while also learning proper grammar

and writing techniques.



● Accessible Learning Tools: Integrating modern AI

technologies makes learning tools more accessible and

intuitive for children, promoting self-directed learning and

exploration.

● Positive Impact on Education: The project's focus on user

experience for children ensures that Sugar Labs' educational

tools remain engaging, effective, and impactful in supporting

children's learning journeys.

What technologies (programming languages, etc.)

will you be using?

The technologies that will be used for this project are as follows:

● Python: Python will be used for implementing NLP
algorithms, developing AI models, and integrating the AI
Assistant within the Sugar activities framework.

● Natural Language Processing (NLP): NLP techniques will
be employed for grammar correction, text analysis, and
generating AI-assisted writing suggestions within the Write
Activity.

● Large Language Models (LLMs): LLMs such as GPT-2 will
be utilized for generating text and providing context-aware
suggestions based on NLP analysis.

● Chatbot Technologies: Chatbot technologies will enhance
user interactions with the AI-assistant, utilizing NLP for
understanding user queries and providing relevant
responses.

● Sugar Activities Framework: Development within the
Sugar activities framework will include integrating NLP-based



functionalities for grammar correction, writing feedback, and
interactive user experiences.

Plan of Action: Grammar Checker and Fine-Tuning for Text

Generation

Goal:

The goal is to implement a grammar checker and fine-tuning

mechanism for text generation within the Write Activity in Sugar

project.

Requirements:

● Python programming skills

● Knowledge of natural language processing (NLP) techniques

● Familiarity with AI models and fine-tuning processes

● Access to GPT-2 or similar large language models

● Development environment set up for Sugar project

Functionalities:

Grammar Checker: Implement an NLP-based grammar checker

to identify and correct grammatical errors in written text.

● I have created a prototype for an NLP-based grammar and
spell checker to identify and correct errors in written text.

● Colab Link: Link
● Video Link: Link

https://colab.research.google.com/drive/1KAQwrdy59e0Wao4eKtnlQjjRymPsXtLz?usp=sharing
https://drive.google.com/file/d/1YPTBvKuLIoARIq7mzj4eKsqKaDm95Eql/view?usp=sharing


Fine-Tuning for Text Generation: Fine-tune a pre-trained AI

model (e.g., GPT-2) on custom writing data to improve text

generation quality and relevance.

● I have developed a prototype for text generation using the
GPT-2 model from Hugging Face, which was further
fine-tuned with custom datasets to enhance the quality and
relevance of the generated text

● Colab Link: Link
● Video Link: Link

Design Figma File: Design
Prototype Video: Video

User Experience (UX) Improvements for Grammar Checker:
● Seamless Integration: Integrate the grammar checker

directly into the Write Activity interface, allowing users to
access grammar correction tools without switching between
different applications.

● Interactive Feedback: Provide real-time feedback on
grammatical errors as users type, with interactive
suggestions that users can accept or ignore with ease.

User Experience (UX) Improvements for AI-Assisted Writing:
● Non-Intrusive Suggestions: Display AI-generated writing

suggestions in a non-intrusive manner, such as pop-ups or
tooltips, to avoid disrupting the writing process.

● Contextual Relevance: Ensure that AI-generated suggestions
are contextually relevant and displayed based on the user's
current writing context, enhancing the usability of the AI
assistant.

https://colab.research.google.com/drive/1kaVQDHxlIek9UZZwgzNMhamWhN-Q7W6t?usp=sharing
https://drive.google.com/file/d/19OvoUoqWpHNa9YFjSVTCKA6W6F41_vyi/view?usp=sharing
https://www.figma.com/proto/iJGmqQfFjUcLem5zPZYxtb/Untitled?node-id=1-58&starting-point-node-id=1%3A58&mode=design&t=NmdzNBdSTYKkbbQB-1
https://drive.google.com/file/d/1iWan-9grJaK4yO9nXl7eDjg2heq3eHBE/view?usp=sharing


Steps to Implement:

Set Up Development Environment:

Install necessary libraries and tools, including Python, NLP

libraries (e.g., NLTK, spaCy), transformers library for AI

models(Hugging Face), and Sugar development environment.

Data Collection and Preprocessing

Gather Text Samples for Grammar Checking:

● Collect a diverse dataset of text samples containing various

grammatical errors such as spelling mistakes, punctuation

errors, sentence structure issues, etc.

● Include text from different genres and styles to ensure the

grammar checker can handle a wide range of writing styles

and contexts.

Fine-Tuning Dataset Collection:

● Gather a dataset of writing samples that reflect the target

writing style and content for fine-tuning the AI model.

● Include a mix of sentences, paragraphs, and longer text

passages to capture the nuances of the writing style and

context.



Data Preprocessing for Grammar Checking and Fine-tuning:

● Tokenization: Tokenize the text data into words, sentences,

or tokens for processing.

● Cleaning: Remove any irrelevant or noisy data, such as

special characters, HTML tags, or non-textual content.

● Normalization: Normalize the text data by converting it to

lowercase, removing accents, and standardizing

abbreviations.

● Formatting: Format the data into appropriate input formats

for NLP tasks, such as tokenized sequences or structured

data for training the grammar checker and fine-tuning the AI

model.

Implement Grammar Checker:

● Develop an NLP-based grammar checker using Python and

appropriate NLP libraries.

● Train the grammar checker on the collected dataset to learn

grammatical rules and error patterns.



Fine-Tuning for Text Generation:

● Select a pre-trained AI model (e.g., GPT-2) for text

generation.

● Fine-tune the AI model using the collected dataset to adapt

it to writing style and content specifics.

Integration with Write Activity:

● Integrate the grammar checker and fine-tuned AI model into

the Write Activity of Sugar project.

● Implement user interface components for accessing

grammar checking and text generation functionalities.

Testing and Validation:

● Test the grammar checker and text generation features

within the write activity of sugar Activity to ensure

functionality and accuracy.

● Validate the results by comparing generated text with

expected outputs and evaluating grammar correction

accuracy.

Optimization and Deployment:

● Optimize the performance of the grammar checker and AI

model for efficient use within write activity.



● Deploy the updated write activity with grammar checking

and fine-tuned text generation capabilities.

By following these steps, the plan aims to successfully implement

a grammar checker and fine-tuning mechanism for text

generation within the write ativity project, enhancing the writing

experience for users.

Tools for Measuring Performance

● Accuracy: Measure correctness in grammar checking and

text generation.

● F1 Score: Balance precision and recall for performance

assessment.

● BLEU Score: Evaluate text generation similarity to

human-written samples.

● ROUGE Score: Assess summary quality and overlap with

reference text.

● Perplexity: Measure language model uncertainty for text

generation.

● Confusion Matrix: Detailed breakdown of correct and

incorrect predictions.

Optimizing the ALgorithm/Model

Identify Bottlenecks: Conduct thorough performance analysis to

identify bottlenecks such as inefficient layers or



computational-heavy operations that significantly impact model

speed and efficiency.

Optimize Hyperparameters: Fine-tune hyperparameters using

techniques like grid or random search to achieve optimal model

performance while reducing computation time and resource

usage.

Some methods I will use for optimization of javaScript

Identify Bottlenecks:

Profiling Tools: Use profiling tools such as TensorFlow Profiler or

PyTorch Profiler to analyze the execution time and resource usage

of different model components. These tools provide insights into

which parts of the model are taking the most time or consuming

the most resources, helping you focus on optimizing those areas.

Optimize Hyperparameters:

Bayesian Optimization: Use Bayesian optimization techniques

such as Gaussian Processes (GP) or Tree-structured Parzen

Estimators (TPE) to efficiently search for optimal

hyperparameters. Bayesian optimization models the

hyperparameter space probabilistically and iteratively explores

promising regions, making it efficient for large search spaces and

computationally expensive models.



GSoC 2024 has two evaluations, once after every 5 weeks.

Highlight the work you plan to complete before each

evaluation.

Timeline outlines project events chronologically, while Milestone 1 focuses on
foundational tasks like UX changes and grammar checker development.
Milestone 2 advances to fine-tuning, optimization, and integration, preparing
the project for evaluation and deployment.

TimeLine

Important Dates



After Submission Of Proposal

From April 3 to May 1, the project will enter a phase focused on exploring its intricacies

further. This involves delving into the project details, comprehending its nuances, and

assembling all the requisite learning resources essential for its seamless development.

Additionally, this period will entail referencing various repositories that have previously

undertaken the implementation of AI Assistant for writing activity, a crucial step in

gathering insights and leveraging existing knowledge to enhance project outcomes.

From May 1 to May 26, the project will focus on community bonding, including engaging

with the mentor. This phase involves building rapport within the project community,

fostering open communication channels, and collaborating closely with the mentor to

discuss and refine project goals and requirements. Discussions with the mentor will be



crucial in gaining valuable insights, receiving guidance, and aligning strategies to ensure

a successful and impactful development process.

Milestone 1

UX Changes and Seamless Integration:

● Integrate the grammar checker into the Write Activity interface with seamless

access.

● Ensure interactive feedback for real-time error suggestions.

Data Collection and Preprocessing:

● Gather text samples for fine-tuning and grammar checking.

● Preprocess data for NLP tasks and grammar checker training.

Grammar Checker and Fine Tuned Model Implementation:

● Develop and implement the NLP-based grammar checker.

● Test the accuracy and functionality of the grammar checker and fine-tuned model

with collected data.

Validation and Documentation Preparation:

● Validate grammar checker results and refine as needed.

● Prepare initial documentation for grammar checker usage.

No. Description of PR / action Start Date Expected Date
for PR

1.1 UX Changes and Seamless Integration 22-26 May 4-8 June

1.2 Data Collection and Preprocessing 6-8 June 10-12 June

1.3 Grammar Checker and Fine Tuned Model

Implementation

12-14 June 18-20 June

1.4 Validation and Documentation Preparation 20-22 June 24-25 June



Milestone 2

Fine-Tuning and Model Optimization (July 1 to July 10):

● Fine-tune AI model for text generation based on collected data.
● Optimize hyperparameters for grammar-checking accuracy.

Testing and Validation (July 11 to July 20):

● Test grammar checker and text generation features for accuracy and reliability.
● Validate results and refine models as necessary.

Integration and Deployment (July 21 to August 10):

● Integrate grammar checker and AI text generation into write activity.
● Optimize performance and deploy features for user testing.

Finalize Documentation(August 11 to August 20):

● Complete comprehensive documentation for grammar checker and AI-assisted
writing features.

● Prepare for final evaluation and feedback collection from users and mentors.

No. Description of PR / action Start Date Expected Date
of PR

1.5 Finalized the implementation and UX
integration into the write activity

25-30 June 1-3 July

1.6 Prepare for midterm evaluation 4-8 July



2.1
Fine-Tuning and Model Optimization

12-18 July 18-20 July

2.2
Testing and Validation

20-26 July 26-28 July

2.3
Integration and Deployment

29 Jul- 5
Aug

5-7 Aug

2.4 Review all implementations, discuss changes and new
functionalities with your mentor, and update
documentation accordingly.

7-15 Aug 15-17 Aug

2.5
Finalize Documentation

17-20 Aug 20-22 Aug

2.6 Prepare for final evaluation 22-26 Aug

Final Goal of the Project

The final goal of the project is to successfully integrate a user-friendly grammar checker
and AI-assisted text generation functionalities into the write activity project, ensuring
seamless access, interactive feedback, and accurate suggestions for users. This goal
encompasses all aspects of development, testing, optimization, integration, and
documentation to deliver a robust and impactful solution for enhancing the writing
experience within Sugar

Mention how much time will you spend each week working

on your project

I will be working 40 hours a Week

How will you report progress between evaluations?

Google Summer of Code (GSoC), I plan to regularly interact with my mentor on every
functionality implemented and provide weekly progress reports to ensure alignment with
project goals and receive valuable feedback and guidance.



Discuss your post-GSoC plans. Will you continue

contributing to Sugar Labs after GSOC ends?

After the GSoC period, I am eager to continue contributing to the Sugarizer project,
particularly focusing on the AI domain. I am passionate about enhancing models,
refining responses, and optimizing response time to continually improve the user
experience. My goal is to make significant strides in advancing AI capabilities within the
SugarLabs Organization, not only benefiting my assigned project but also collaborating
on other AI projects to collectively elevate the organization's AI functionalities. I am
committed to ongoing learning, innovation, and making meaningful contributions that
positively impact the Sugarizer project and its users.


