
‭Google Summer of Code 2024‬
‭Add real-time collaboration to Music Blocks‬

‭Ajeet Pratap Singh‬

‭Section 1: About You‬

‭My name is Ajeet Pratap Singh. I am a second-year undergraduate student at the‬

‭Chhatrapati Shahu Ji Maharaj University, Kanpur, pursuing a Bachelor’s in Computer‬

‭Science as my major.‬

‭What project are you applying for?‬

‭Add real-time collaboration to Music Blocks.‬

‭Why are you interested in working with Sugar Labs? And how this project will‬

‭impact Sugar Labs?‬

‭I started contributing to Sugar Labs in November 2023. I started contributing to Sugar‬

‭Labs because I wanted to explore the open-source community and contribute to‬

‭projects. Contributing to Sugar Labs helped me understand its codebase and‬

‭whenever I got stuck mentors were readily available for help.‬

‭Other than contributions, Playing with Music Blocks is fun. Before this, I had not‬

‭experienced such an environment where we could learn concepts of music and‬

‭programming and play altogether. I have also made a project in Music Blocks named‬

‭Elephant Ring Song‬‭.‬

‭But while playing with Music Blocks, One thing I missed was my friends. It would be a‬

‭lot of fun if I’d be able to connect with my friends and play with them.‬

https://musicblocks.sugarlabs.org/index.html?id=1711535673834024&run=True

‭So, Following this, I want to use my familiarity with the codebase and love to play with‬

‭Music Blocks to add‬‭Real-time collaboration to Music‬‭Blocks‬‭. This project will‬

‭impact Music Blocks in the following ways:-‬

‭1.‬ ‭Enhanced Learning Experience‬‭: Real-time collaboration‬‭allows learners to‬

‭work together on Music Blocks projects, fostering collaboration and teamwork.‬

‭This can lead to a richer learning experience, as students can share ideas,‬

‭learn from each other, and create music collaboratively.‬

‭2.‬ ‭Increased Engagement‬‭: Collaborative features can make‬‭Music Blocks more‬

‭engaging for students. The ability to work together in real time can make‬

‭learning more interactive and fun, encouraging students to spend more time‬

‭exploring and creating music.‬

‭3.‬ ‭Broader Reach‬‭: By enabling real-time collaboration,‬‭Music Blocks can‬

‭potentially reach a larger audience. Students and teachers from around the‬

‭world can collaborate on projects, regardless of their location, leading to a‬

‭more diverse and inclusive learning environment.‬

‭4.‬ ‭Feedback and Improvement‬‭: Real-time collaboration‬‭can also facilitate‬

‭feedback and improvement. Teachers can easily monitor students' progress,‬

‭provide feedback, and offer guidance, helping students improve their musical‬

‭skills and understanding of programming concepts.‬

‭Overall, adding real-time collaboration to Music Blocks aligns with Sugar Labs' mission‬

‭of providing innovative educational tools and fostering a collaborative learning‬

‭community. It can help enhance the effectiveness of the Sugar Learning Platform and‬

‭contribute to a more engaging and interactive learning experience for students‬

‭worldwide.‬

‭Prior Experience‬

‭I've been doing web development for the past two years, and I'm a web developer who‬

‭predominantly uses JavaScript, TypeScript, React, Tailwind, and its other libraries and‬

‭frameworks. For the past 4 to 5 months, I've been contributing to Sugar Labs as a‬

‭contributor in Music Blocks. Some of my contributions are mentioned below.‬

‭Links to Pull Requests‬

‭●‬ ‭#3461‬‭Implemented responsive Tooltips in JavaScript‬‭Editor.‬

‭●‬ ‭#3580‬‭Update the HTML file with the README file‬

‭●‬ ‭#3608‬‭Optimized code Using a Function‬

‭●‬ ‭#3507‬‭Fixed Creation of Duplicate Phrases in Phrase‬‭Maker.‬

‭●‬ ‭#3627‬‭Fixed the inappropriate position of the cursor‬‭in the Input box‬

‭●‬ ‭#3728‬‭Fixed the responsiveness of the Top-right corner‬‭Buttons.‬

‭●‬ ‭#3731‬‭Implemented Ctrl+z shortcut for Undo functionality‬

‭●‬ ‭#3468‬‭Fixed the appearance of the Trashcan by repositioning‬‭it.‬

‭●‬ ‭#3440‬‭Fixed Typos in the README file‬

‭A complete list of my PRs can be found‬‭here‬‭.‬

‭Also, I have opened 18 issues and fixed them which can be found‬‭here‬‭.‬

‭Academic Experience and Projects‬

https://github.com/sugarlabs/musicblocks/pull/3461
https://github.com/sugarlabs/musicblocks/pull/3580
https://github.com/sugarlabs/musicblocks/pull/3608
https://github.com/sugarlabs/musicblocks/pull/3507
https://github.com/sugarlabs/musicblocks/pull/3627
https://github.com/sugarlabs/musicblocks/pull/3728
https://github.com/sugarlabs/musicblocks/pull/3731
https://github.com/sugarlabs/musicblocks/pull/3468
https://github.com/sugarlabs/musicblocks/pull/3440
https://github.com/sugarlabs/musicblocks/pulls?q=is%3Apr+author%3Aapsinghdev+is%3Aclosed
https://github.com/sugarlabs/musicblocks/issues?q=is%3Aissue+is%3Aclosed+author%3Aapsinghdev

‭As part of my Academic learning, I have made the following projects Projects.‬

‭●‬ ‭IndiaPay(An online payment app)‬‭- This app is inspired‬‭by‬‭paytm.com‬‭that lets‬

‭users create accounts and send money online securely.‬

‭The front end is developed using React and Tailwind CSS, while the back end is‬

‭built with JavaScript and Node.js. Credentials security is implemented using‬

‭bcryptjs and JSON web token, with MongoDB and the Mongoose library utilized‬

‭for the database. Express.js serves as the server framework, Zod for input‬

‭validation, and Axios for request handling.‬

‭●‬ ‭GoFoods‬‭-‬‭The website enables users to browse food‬‭items online, add them to‬

‭a cart, and place orders. To develop this platform, JavaScript and Node.js are‬

‭utilized for the back end, React for the front end, MongoDB for the database,‬

‭and Express.js for the server.‬

‭Project Size‬

‭I am applying for a large project (~350 hours).‬

‭Project Timeframe‬

‭01 May 2024 to 03 September 2024‬

‭Contact info and timezone(s)‬

‭Primary Email‬‭:‬‭ajeetpratap517@gmail.com‬

‭Secondary Email‬‭:‬‭ajeetpratapsingh351@gmail.com‬

‭Contact Number:‬‭+91 6386097859‬

‭Github:‬‭@apsinghdev‬

https://github.com/apsinghdev/Paytm
https://paytm.com/
https://github.com/apsinghdev/GoFoods-Website
mailto:ajeetpratap517@gmail.com
mailto:ajeetpratapsingh351@gmail.com
https://github.com/apsinghdev

‭Matrix Id:‬‭@ajeit2023:matrix.org‬

‭Language:‬‭Hindi (Native), English (Fluent)‬

‭Location‬‭: Kanpur, India‬

‭Time Zone‬‭:‬‭IST (GMT+5:30)‬

‭Preferred mode of Communication:‬‭Email, Google Meet,‬‭Jitsi, Matrix‬

‭Time Commitment‬

‭I am having summer vacation from 5th May to 26th June. In this time frame, I would‬

‭be able to devote‬‭~40-45 hrs/week‬‭. After that, I would‬‭be able to devote‬‭~20-30‬

‭hrs/week.‬‭which may increase if the need arises. I‬‭am working on the GSoC project‬

‭from 27th May to 26th August timeframe (‬‭Note:‬‭can‬‭be extended if the need arises).‬

‭S. No‬ ‭Dates Days (Total) Time Commitment‬

‭1.‬ ‭27th May - 30th June Mon-Sun (7) 6 hr/day (Mon-Sun)‬

‭2.‬ ‭30th June - 26th Aug Mon-Sun (7) 3 hr/day (Mon-Fri)‬
‭5 hr/day (Sat-Sun)‬

‭Estimated Total Working Days‬‭: 90‬

‭Estimated Hours‬‭: 350 hours (This may change as per‬‭requirements).‬

‭To report my progress, I will provide detailed progress updates every week, outlining the‬

‭tasks completed, challenges faced, and plans for the upcoming week. These updates‬

‭will be shared on the project's mailing list or designated communication channel.‬

‭Technical Requirements‬

‭According to the discussion on Music Blocks’s Matrix (Element) server, the‬

‭expected libraries to use for real-time collaboration include:‬

‭1.‬ ‭Socket.io‬

‭2.‬ ‭Y.js‬‭.‬

‭Socket.io can’t handle conflicts directly. To implement conflict management in‬

‭collaboration, we can use Conflicts-Free Replicated Data Types (CRDT).‬‭I made a small‬

‭Prototype‬‭that uses WebSockets for real-time collaboration.‬

‭A chat feature can also be implemented using the same libraries.‬‭Here‬‭is an example of‬

‭socket.io’s GitHub page implementing the same.‬

‭Benefits of using Socket.io‬

‭●‬ ‭Real-time Communication:‬‭Socket.io enables real-time,‬‭bidirectional‬

‭communication between clients and servers, crucial for collaborative applications.‬

‭●‬ ‭Event-Based Architecture:‬‭Its event-driven model simplifies‬‭handling various user‬

‭interactions and updates.‬

‭●‬ ‭Cross-Browser Compatibility:‬‭Works across different‬‭browsers, ensuring a‬

‭consistent experience for all users.‬

‭●‬ ‭Scalability:‬‭Supports scaling to accommodate a large‬‭number of concurrent‬

‭users or connections.‬

‭●‬ ‭Error Handling:‬‭Provides robust error handling, ensuring reliable communication‬

‭even in challenging conditions.‬

‭●‬ ‭Room Support:‬‭Allows grouping clients into rooms,‬‭facilitating targeted‬

‭messaging and collaboration.‬

‭●‬ ‭Low Latency:‬‭Minimizes latency, providing a more responsive and engaging user‬

‭experience.‬

http://socket.io/
https://yjs.dev/
https://github.com/apsinghdev/drawRTC
https://github.com/socketio/socket.io/blob/main/examples/chat/public/main.js

‭●‬ ‭Ease of Use:‬‭Provides a simple API that abstracts‬‭the complexities of‬

‭WebSokets, making it easy to integrate into the application.‬

‭●‬ ‭Versatility:‬‭This can be used in various types of‬‭applications, from our chat‬

‭application to real-time project sharing/editing.‬

‭Benefits of using Y.js‬

‭●‬ ‭Conflict Resolution:‬‭Y.js uses CRDTs to handle concurrent‬‭edits, ensuring that all‬

‭users see a consistent view of the document without conflicts.‬

‭●‬ ‭Offline Editing:‬‭Users can edit the document even‬‭when offline, and changes will‬

‭be synced automatically when the connection is restored.‬

‭●‬ ‭Scalability:‬‭Y.js is designed to scale to a large‬‭number of users collaborating on a‬

‭document simultaneously.‬

‭●‬ ‭Efficiency:‬‭Y.js uses efficient data structures and‬‭algorithms to minimize‬

‭bandwidth and processing requirements, making it suitable for low-latency‬

‭applications.‬

‭●‬ ‭Customizable:‬‭Y.js provides a flexible API that allows‬‭developers to customize‬

‭and extend its functionality to meet specific requirements.‬

‭●‬ ‭Conflict Resolution Strategies:‬‭Y.js offers different‬‭conflict resolution strategies,‬

‭allowing developers to choose the most suitable approach based on their‬

‭application requirements. Strategies include last-write-wins, highest-priority-wins,‬

‭and more.‬

‭In a few of the previous discussions, mentors mentioned Jabber as the technology for‬

‭collaboration. So, whether to use WebSockets or Jabber or rewrite something similar‬

‭to that for Music Blocks is still under consideration. The final technology to be used‬

‭will be decided after discussions with mentors.‬

‭Other Summer Obligations,‬

‭I have no commitments in the summer. I’ll be staying back home for most of it. I have‬

‭mentioned my typical working hours above and on average will be able to spend 40-45‬

‭hours per week on the project.‬

‭Communication Channels‬

‭I am active on Emails and the Matrix (Element) app. I can work with whatever platform‬

‭my mentor prefers. Meetings can be held every week to discuss progress in the project.‬

‭Section 2: Proposal Details‬

‭Problem Statement‬
‭Final Target‬

‭Add real-time collaboration to Music Blocks‬

‭Target Audience‬
‭●‬‭Music Blocks Users‬

‭Core User Need‬ ‭●‬‭Real-time Collaboration‬‭: Users need the ability‬‭to collaborate on‬

‭Music Blocks projects with others in real-time, sharing code‬

‭stacks and graphical output instantly.‬

‭●‬‭Synchronization‬‭: Users require a high degree of‬‭synchronization‬

‭between their projects across different browsers, ensuring that‬

‭changes made by one user are immediately reflected for all‬

‭collaborators with low latency.‬

‭Section 2.1: WHAT‬‭(‬‭Key Milestones‬‭)‬

‭1.‬ ‭Invite friends to join the project.‬

‭a.‬ ‭Start a session‬

‭b.‬ ‭Generate a shareable link to invite‬

‭2.‬ ‭Create a common space to collaborate.‬

‭a.‬ ‭Give a unique ID to the user (the session creator)‬

‭b.‬ ‭Create an interface for collaboration‬

‭c.‬ ‭The interface can have the following elements:‬

‭i. A‬‭list‬‭of friends who’ve joined‬

‭ii. A‬‭chat section‬‭for the users‬

‭iii.‬‭Common space‬‭for collaboration‬

‭iv. Names of the users on their interfaces‬

‭v. A‬‭stop‬‭button‬

‭3.‬ ‭Connect friends to the common space.‬

‭a.‬ ‭Send the friends to the common space when they click on the link‬

‭b.‬ ‭Give each friend a unique ID‬

‭c.‬ ‭Give the friends a way to set their display name (Username)‬

‭d.‬ ‭Show the new joiners in the‬‭list‬

‭4.‬ ‭Share the same state of the project among all the friends.‬

‭a.‬ ‭Share the project among all in the common space‬

‭b.‬ ‭Share the position and movement of the cursor (with its username)‬

‭among all the friends‬

‭5.‬ ‭Collaborate in real-time with low latency.‬

‭a.‬ ‭Enable updates to the project for all the friends when changes are made by‬

‭one friend‬

‭b.‬ ‭Handle the possible conflicts‬

‭6.‬ ‭Save the final changes to the original project.‬

‭a.‬ ‭Save the final project when all the users quit the session‬

‭b.‬ ‭Handle edge cases‬

‭c.‬ ‭Terminate the session‬

‭Section 2.2: HOW‬

‭I have divided this project into three parts.‬

‭1. Implementation of User Management and Collaboration Setup‬

‭2. Implementation of Real-Time Collaboration Interface and Activity‬

‭3. Data Management and Finalization‬

‭Part 1: Implementation of User Management and Collaboration‬

‭Setup.‬

‭User Management and Collaboration Setup can be implemented by following these steps.‬

‭●‬ ‭Setup route that serves the common room‬

‭For this, I will have to define a new route on the server side that will‬
‭host the common space. That route will look something similar to‬
‭this:‬

‭https:‬‭//musicblocks.sugarlabs‬‭.org‬‭//‬‭#room=${room_id},${user_id}‬

‭Where‬‭room_id‬‭will be the unique ID of the room where‬‭users will collaborate‬

‭and‬‭user_id‬‭will be the unique ID given to the creator‬‭of the session.‬

‭●‬ ‭Implement the functionality to start a new session and create a common‬

‭space for collaboration.‬

‭For the collaboration, the standard practice is to start a session so that the‬

‭changes in the project can be tracked. Also, a session works as a flag for the‬

‭collaboration that can be used to start/end certain activities when the‬

‭collaboration starts/ends.‬

‭To implement this functionality, I’ll emit a‬‭startSession‬‭event when the ‘Start‬

‭a Session’ button is clicked. The code snippets below are the overview of this‬

‭functionality.‬

‭Server-side:‬

‭const‬‭wss =‬‭new‬‭WebSocket.Server({ port: 3000 });‬
‭const‬‭rooms =‬‭new‬‭Map();‬
‭wss.on(‬‭'connection'‬‭, (ws) => {‬

‭ws.on(‬‭'message'‬‭, (message) => {‬
‭const‬‭data =‬‭JSON‬‭.parse(message);‬
‭if‬‭(data.type ===‬‭'startSession'‬‭) {‬

‭const‬‭roomId = uuidv4();‬
‭const‬‭userId = uuidv4();‬
‭ws.send(‬‭JSON‬‭.stringify({‬‭type‬‭:‬‭'sessionCreated'‬‭,‬‭roomId, userId‬

‭}));‬
‭}});‬

‭});‬

‭Client-side‬

‭const‬‭ws =‬‭new‬‭WebSocket(‬‭'ws://localhost:3000'‬‭);‬
‭let‬‭isSessionOn =‬‭false‬‭;‬
‭let‬‭shareableLink;‬
‭startASession.addeventlistener(‬‭'click'‬‭, ()=>{‬

‭ws.send(‬‭JSON‬‭.stringify({‬‭type‬‭:‬‭'startSession'‬‭}));‬

‭})‬
‭ws.onmessage = (event) => {‬

‭const‬‭data =‬‭JSON‬‭.parse(event.data);‬
‭if‬‭(data.type ===‬‭'sessionCreated'‬‭) {‬

‭const‬‭roomId = data.roomId;‬
‭const‬‭userId = data.userId;‬
‭shareableLink = createRoomLink(roomId, userId);‬
‭isSessionOn =‬‭true‬‭;‬

‭}‬
‭};‬

‭●‬ ‭Implement functionality to generate a shareable link that can be sent to‬

‭friends to invite them to join the session.‬

‭A function‬‭createRoomLink‬‭will be defined for it and‬‭it will return the link that‬

‭we’ll share to invite users for collaboration.‬

‭const‬‭createRoomLink = (roomId, userId) => {‬
‭const‬‭link =‬

‭̀https://musicblocks.sugarlabs.com/#room=‬‭${roomId}‬‭,‬‭${userId}‬‭̀‬‭;‬
‭return‬‭link;‬

‭};‬
‭const‬‭roomLink = createRoomLink();‬

‭Note:‬‭We can use the UUID module to generate unique‬‭ID’s for users and‬

‭sessions.‬

‭●‬ ‭Implement logic to connect friends to the common space when they click on‬

‭the shareable link.‬

‭●‬ ‭Assign each friend a unique ID and manage their connection to the session.‬

‭When a user clicks on that shared link, the collaboration interface will be‬

‭opened for them and a unique ID will be assigned. We‘ll store their unique IDs‬

‭and joining orders in the‬ ‭rooms‬‭object for future‬‭use cases.‬

‭Example:‬

‭wss.on(‬‭'connection'‬‭, (ws) => {‬
‭ws.on(‬‭'message'‬‭, (message) => {‬

‭const‬‭data =‬‭JSON‬‭.parse(message);‬
‭if‬‭(data.type ===‬‭'join'‬‭) {‬

‭const‬‭roomId = data.roomId;‬
‭const‬‭userId = uuidv4();‬

‭// Store the user ID and WebSocket connection in‬‭the room‬
‭if‬‭(!rooms.has(roomId)) {‬

‭rooms.set(roomId,‬‭new‬‭Map());‬
‭}‬
‭const‬‭room = rooms.‬‭get‬‭(roomId);‬
‭const‬‭joiningOrder = room.size +‬‭1‬‭;‬
‭room.‬‭set‬‭(userId, { ws, joiningOrder });‬

‭// Broadcast to all users in the room that a new user has joined‬
‭rooms.get(roomId).forEach((userWs, id) => {‬

‭if‬‭(id !== userId) {‬
‭userWs.send(‬‭JSON‬‭.stringify({‬‭type‬‭:‬‭'userJoined'‬‭,‬‭userId }));‬

‭}‬
‭});‬

‭}‬
‭});‬

‭});‬

‭●‬ ‭Add UI for “Collaborate”, “Start a Session” and “Send Link”‬

‭functionalities:‬

‭Collaborate button UI (similar to this)‬

‭As we already have buttons like “Share Project”, “Open in Music‬

‭Blocks”, and “Merge”, Besides these buttons, I’ll implement a similar‬

‭one for “Collaborate” by the following practice.‬

‭<a‬‭class‬‭=‬‭"project-icon tooltipped"‬‭data-position‬‭=‬‭"bottom"‬
‭data-delay‬‭=‬‭"50"‬‭data-tooltip‬‭=‬‭"‬‭${_("Collaborate")}‬‭"‬
‭id‬‭=‬‭"global-project-collaborate-{ID}"‬‭><i‬
‭class‬‭=‬‭"material-icons"‬‭>share</i>‬

‭Start a session card UI (similar to this)‬

‭In order to add this UI, I’ll create a container div. Then a card div. And after adding the‬

‭necessary elements I’ll add proper styling to make it perfect. The code snippet below‬

‭is an example of the implementation of this UI.‬

‭function‬‭startSessionCard‬‭() {‬
‭const‬‭container =‬‭document‬‭.createElement(‬‭'div'‬‭);‬
‭container.classList.add(‬‭'card-container'‬‭);‬
‭document‬‭.body.appendChild(container);‬

‭const‬‭card =‬‭document‬‭.createElement(‬‭'div'‬‭);‬
‭card.classList.add(‬‭'card'‬‭);‬
‭container.appendChild(card);‬

‭const‬‭heading =‬‭document‬‭.createElement(‬‭'h2'‬‭);‬
‭heading.textContent =‬‭'Live collaboration'‬‭;‬
‭card.appendChild(heading);‬

‭const‬‭description =‬‭document‬‭.createElement(‬‭'p'‬‭);‬
‭description.textContent =‬‭'Invite your friends to‬‭collaborate on your‬
‭drawing'‬‭;‬
‭card.appendChild(description);‬

‭const‬‭button =‬‭document‬‭.createElement(‬‭'button'‬‭);‬
‭button.textContent =‬‭'Start session'‬‭;‬

‭card.appendChild(button);‬

‭container.style.display =‬‭'flex'‬‭;‬
‭container.style.justifyContent =‬‭'center'‬‭;‬
‭container.style.alignItems =‬‭'center'‬‭;‬
‭container.style.height =‬‭'100vh'‬‭;‬

‭card.style.padding =‬‭'20px'‬‭;‬
‭card.style.border =‬‭'1px solid #ccc'‬‭;‬
‭card.style.borderRadius =‬‭'8px'‬‭;‬
‭card.style.textAlign =‬‭'center'‬‭;‬

‭return‬‭button;‬
‭}‬

‭Send Link card UI (similar to this) -‬

‭function‬‭inviteFriends‬‭() {‬
‭const‬‭container2 =‬‭document‬‭.createElement(‬‭'div'‬‭);‬
‭container2.classList.add(‬‭'card-container'‬‭);‬
‭document‬‭.body.appendChild(container2);‬

‭const‬‭card2 =‬‭document‬‭.createElement(‬‭'div'‬‭);‬
‭card2.classList.add(‬‭'card'‬‭);‬
‭container2.appendChild(card2);‬

‭const‬‭closeButton =‬‭document‬‭.createElement(‬‭'button'‬‭);‬
‭closeButton.textContent =‬‭'×'‬‭;‬
‭closeButton.classList.add(‬‭'close-button'‬‭);‬

‭card2.appendChild(closeButton);‬

‭closeButton.addEventListener(‬‭'click'‬‭, () => {‬
‭container2.remove();‬

‭});‬

‭const‬‭heading2 =‬‭document‬‭.createElement(‬‭'h2'‬‭);‬
‭heading2.textContent =‬‭'Live collaboration'‬‭;‬
‭card2.appendChild(heading2);‬

‭const‬‭nameLabel =‬‭document‬‭.createElement(‬‭'label'‬‭);‬
‭nameLabel.textContent =‬‭'Your name:'‬‭;‬
‭card2.appendChild(nameLabel);‬

‭const‬‭nameInput =‬‭document‬‭.createElement(‬‭'input'‬‭);‬
‭nameInput.setAttribute(‬‭'type'‬‭,‬‭'text'‬‭);‬
‭card2.appendChild(nameInput);‬

‭const‬‭linkContainer =‬‭document‬‭.createElement(‬‭'div'‬‭);‬
‭card2.appendChild(linkContainer);‬

‭const‬‭linkSpan =‬‭document‬‭.createElement(‬‭'span'‬‭);‬
‭linkSpan.textContent =‬‭'Link: '‬‭;‬
‭linkContainer.appendChild(linkSpan);‬

‭const‬‭linkInput =‬‭document‬‭.createElement(‬‭'input'‬‭);‬
‭linkInput.setAttribute(‬‭'type'‬‭,‬‭'text'‬‭);‬
‭linkInput.value = shareableLink;‬
‭linkInput.readOnly =‬‭true‬‭;‬
‭linkContainer.appendChild(linkInput);‬

‭const‬‭copyButton =‬‭document‬‭.createElement(‬‭'button'‬‭);‬
‭copyButton.textContent =‬‭'Copy link'‬‭;‬
‭copyButton.addEventListener(‬‭'click'‬‭, () => {‬

‭linkInput.select();‬
‭document‬‭.execCommand(‬‭'copy'‬‭);‬

‭});‬

‭linkContainer.appendChild(copyButton);‬
‭}‬

‭●‬ ‭Integrate UI with its respective functionality.‬

‭For the integration of “Collaborate” I would have to catch the button with ID‬

‭global-project-collaborate-${this.id}‬‭and when it‬‭gets clicked, It‬

‭would render the UI of “Start a Session” card and then I would access the‬

‭“Start a Session” button from‬‭startSessionCard()‬‭function.‬‭When this‬

‭button gets clicked it executes the‬‭collaborate‬‭method‬‭that would be‬

‭defined in‬‭SessionStarter.‬

‭frag.getElementById(‬‭̀global-project-collaborate-${this.id}`‬‭).addEventListe‬
‭ner(‬‭"click"‬‭, () => {‬

‭const‬‭button = startSessionCard();‬
‭button.addEventListener(‬‭"click"‬‭, () => {‬
‭inviteFriends();‬
‭Planet.GlobalPlanet.SessionStarter.collaborate(‬‭this‬‭.id);‬

‭});‬
‭});‬

‭Part 2: Implementation of Real-Time Collaboration Interface and‬
‭Activity.‬

‭After the part 1, I will implement Real-Time collaboration Interface and Activities in the‬
‭following steps:‬

‭●‬ ‭Develop the frontend interface that could have the following elements‬

‭1‬‭.‬‭A list of joined friends‬

‭For this, I would have to extract the friends' names from the‬‭room‬‭object I‬
‭mentioned above and then show them on the screen.‬

‭function‬‭getJoinedUsers‬‭() {‬
‭let‬‭joinedUsers = [];‬
‭rooms.forEach((room) => {‬

‭room.users.forEach((user) => {‬
‭const‬‭userName = user.username;‬
‭joinedUsers.push(userName);‬
‭});‬

‭});‬
‭return‬‭joinedUsers‬
‭}‬

‭2. A chat section‬

‭Adding a chat feature will be pretty straightforward. To implement this, I would‬

‭have to write code that fires‬‭chat‬‭event and‬ ‭messages‬‭from the client side and‬

‭when the server catches the‬‭chat‬‭event it will emit‬‭the‬‭messages‬‭to all the peers‬

‭connected in the collaboration room.‬

‭Server-side‬

‭const server = http.createServer();‬
‭const io =‬‭new‬‭Server(server);‬

‭io.‬‭on‬‭(‬‭'connection'‬‭, (socket) => {‬
‭socket.‬‭on‬‭(‬‭'chat'‬‭, (message) => {‬
‭socket.broadcast.emit(‬‭'chat'‬‭, message);‬

‭});‬

‭socket.‬‭on‬‭(‬‭'disconnect'‬‭, () => {‬
‭console‬‭.log(‬‭'A user disconnected'‬‭);‬

‭});‬
‭});‬

‭Client-side (Browser)‬

‭<!DOCTYPE html>‬
‭<html‬‭lang‬‭=‬‭"en"‬‭>‬
‭<head>‬

‭<meta‬‭charset‬‭=‬‭"UTF-8"‬‭>‬
‭<title>‬‭Music Blocks Chat‬‭</title>‬

‭</head>‬
‭<body>‬

‭<ul‬‭id‬‭=‬‭"messages"‬‭>‬
‭<form‬‭id‬‭=‬‭"form"‬‭>‬

‭<input‬‭id‬‭=‬‭"input"‬‭autocomplete‬‭=‬‭"off"‬‭/>‬
‭<button‬‭id‬‭=‬‭"send"‬‭>‬‭Send‬‭</button>‬

‭</form>‬

‭<script‬
‭src‬‭=‬‭"https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.3.2/socket.io.‬
‭js"‬‭></script>‬

‭<script>‬
‭const‬‭socket = io();‬
‭const‬‭form =‬‭document‬‭.querySelector(‬‭'form'‬‭);‬
‭const‬‭input =‬‭document‬‭.getElementById(‬‭'input'‬‭);‬
‭const‬‭messages =‬‭document‬‭.getElementById(‬‭'messages'‬‭);‬
‭form.addEventListener(‬‭'submit'‬‭, (e) => {‬

‭e.preventDefault();‬
‭if‬‭(input.value) {‬

‭socket.emit(‬‭'chat'‬‭, input.value);‬
‭input.value =‬‭''‬‭;‬

‭}‬
‭});‬

‭socket.on(‬‭'chat'‬‭, (message) => {‬
‭const‬‭item =‬‭document‬‭.createElement(‬‭'li'‬‭);‬
‭item.textContent = message;‬
‭messages.appendChild(item);‬
‭window‬‭.scrollTo(0,‬‭document‬‭.body.scrollHeight);‬

‭});‬
‭</script>‬

‭</body>‬
‭</html>‬

‭3. Common space for collaboration‬

‭This will be the most significant part of the interface, containing the project‬

‭on which users will collaborate. As far as I know, we won't need to add any‬

‭extra UI for this part, as it is supposed to be like a container that will contain‬

‭the project. However, I'll discuss with mentors how this common space‬

‭should look and implement it accordingly.‬

‭4. A button to save/Quit/Exit the project‬

‭After collaborating on a project, The users would need to‬

‭stop-the-session/save-the-project. For that, I’d add a button similar to this:‬

‭When this button gets clicked, It will trigger the‬‭handleStopSession()‬‭function,‬

‭and that function will execute the logic to exit the user from the session and save‬

‭a local copy of the project with the last synced changes.‬

‭Also as per the discussions with mentors, we won’t have to add “ownership” for a‬

‭project so we’ll save the changes of the project when the last user leaves the‬

‭room or there is no one in the room. A simple prototype of the above functionality‬

‭is presented below.‬

‭const‬‭stopSessionButton =‬‭document‬‭.createElement(‬‭'button'‬‭);‬
‭stopSessionButton.textContent =‬‭'Stop Session'‬‭;‬
‭stopSessionButton.addEventListener(‬‭'click'‬‭, handleStopSession);‬

‭document‬‭.body.appendChild(stopSessionButton);‬
‭function‬‭handleStopSession‬‭() {‬

‭console‬‭.log(‬‭'Session stopped'‬‭);‬
‭}‬

‭function‬‭handleStopSession‬‭() {‬
‭mergeChanges(projectData, lastSyncedChanges);‬
‭saveProjectToLocal(projectData);‬
‭// notify others of this exit‬

‭}‬
‭function‬‭mergeChanges‬‭(projectData, changes) {‬

‭//We’ll apply CRDT merge strategies here‬
‭Object‬‭.assign(projectData, changes);‬

‭}‬
‭function‬‭saveProjectToLocal‬‭(projectData) {‬

‭localStorage.setItem(‬‭'projectData'‬‭,‬‭JSON‬‭.stringify(projectData));‬
‭}‬

‭Note:‬‭The final list of what elements are needed for‬‭the collaboration interface is‬

‭yet to be discussed with mentors and after the discussion, I will finalize and‬

‭implement them.‬

‭●‬ ‭Implement functionality to share the project state among all friends in the‬

‭common space.‬

‭After the user starts/joins the session, we have to make the ‘common space’ and‬

‭the ‘project’ (on which the user has initiated the collaboration) available to the‬

‭user. To achieve this, On a high level, I would create a function‬

‭startCollaboration()‬‭that will serve two main purposes:‬

‭1.‬ ‭Render the “Collaboration Room” UI for the user that includes‬

‭a.‬ ‭A display to show the list of friends who joined‬

‭b.‬ ‭A chat section to chat with them‬

‭c.‬ ‭A “Common space” to collaborate‬

‭d.‬ ‭An exit/save button‬

‭2.‬ ‭Load that project from the server and Render it in the “Common space”.‬

‭Example:‬

‭function‬‭startSession‬‭() {‬
‭setInterface();‬‭// Create the user interface‬
‭setupProject();‬‭// Load and render the project‬

‭}‬

‭function‬‭setInterface‬‭() {‬
‭// Here the Interface components I mentioned above‬‭will be called‬

‭}‬
‭function‬‭setupProject‬‭() {‬

‭const‬‭projectId =‬‭'1710428168192027'‬‭;‬
‭const‬‭url =‬

‭̀https://musicblocks.sugarlabs.org/index.html?id=${projectId}&run=True`‬
‭;‬

‭fetch(url)‬
‭.then(response => response.text())‬
‭.then(html => {‬
‭const‬‭commonSpace =‬‭document‬‭.getElementById(‬‭'common-space'‬‭);‬

‭commonSpace.innerHTML = html;‬
‭})‬
‭.catch(error => {‬

‭console‬‭.error(‬‭'Error loading project:'‬‭, error);‬
‭});‬

‭}‬

‭●‬ ‭Handle real-time updates to the project when changes are made by one of the‬
‭friends.‬

‭As discussed with mentors, we are going to use‬‭client-server‬‭architecture‬‭for the‬

‭collaboration. The overview of its implementation would be like this:‬

‭1.‬ ‭First, I’ll initialize the Yjs and access the WebSocket server.‬

‭2.‬ ‭After that, I’ll have to create a shared data type (e.g., Y.Map, Y.Array)‬

‭representing the document being collaborated on.‬

‭3.‬ ‭When the user makes a change to the document, those changes will be‬

‭applied to the local Yjs data type.‬

‭4.‬ ‭As Yjs automatically generates CRDT operations to represent the change, It‬

‭will emit an update event.‬

‭5.‬ ‭After this, those CRDT operations will be sent over the WebSocket‬

‭connections to the server.‬

‭6.‬ ‭Now we’ll have to Listen for incoming CRDT operations from other clients‬

‭over the WebSocket connection.‬

‭7.‬ ‭And apply these operations to the local Yjs data type to reflect changes‬

‭made by other users.‬

‭8.‬ ‭Finally, As Yjs handles the merging of concurrent changes automatically‬

‭based on the CRDT operations, All clients will receive and apply the same set‬

‭of operations, ensuring consistent document states across all clients.‬

‭The following snippets are the prototype of the above steps:‬

‭Client-side‬

‭const‬‭ydoc =‬‭new‬‭Y.Doc();‬
‭const‬‭provider =‬‭new‬‭WebsocketProvider(‬‭'ws://localhost:3000'‬‭,‬
‭'my-room'‬‭, ydoc);‬

‭const‬‭ymap = ydoc.getMap(‬‭'project'‬‭);‬

‭ymap.observe((event)=>{‬
‭console‬‭.log(event)‬

‭})‬

‭ymap.set(‬‭'key'‬‭,‬‭'value'‬‭);‬

‭// Send changes over WebSocket‬
‭provider.on(‬‭'update'‬‭, (update) => {‬

‭sendUpdateToServer(update);‬
‭});‬

‭// Receive changes from WebSocket‬
‭provider.on(‬‭'message'‬‭, (message) => {‬

‭applyUpdateFromServer(message);‬
‭});‬

‭Server-side‬

‭const‬‭WebSocket =‬‭require‬‭(‬‭'ws'‬‭);‬
‭const‬‭{ Y, WebsocketProvider } =‬‭require‬‭(‬‭'yjs'‬‭);‬
‭const‬‭ydoc =‬‭new‬‭Y.Doc();‬
‭const‬‭wss =‬‭new‬‭WebSocket.Server({ port: 3000});‬

‭wss.on(‬‭'connection'‬‭, (ws) => {‬
‭const‬‭provider =‬‭new‬‭WebsocketProvider(ws, ydoc,‬‭'my-room'‬‭);‬

‭provider.on(‬‭'update'‬‭, (update) => {‬
‭Y.applyUpdate(ydoc, update);‬

‭// Broadcast the update to all other clients‬
‭wss.clients.forEach((client) => {‬

‭if‬‭(client !== ws && client.readyState === WebSocket.OPEN)‬‭{‬
‭client.send(‬‭JSON‬‭.stringify(update));‬

‭}‬
‭});‬

‭});‬

‭// Handle disconnection‬
‭ws.on(‬‭'close'‬‭, () => {‬‭// cleanup code‬‭});‬

‭});‬

‭●‬ ‭Implement functionality to share the position and movement of the cursor‬
‭among all friends in real time.‬

‭As of now, we’ll already have the users stored with their unique IDs and‬

‭usernames, now I’ll implement a web socket event to share the position of the‬

‭cursor and username of a particular user among all the peers connected on a‬

‭project. As clarified by the mentors, It will be helpful for the peers to check where‬

‭their friends are heading without explicitly asking them in the chat. It will make‬

‭the collaboration smoother and joyful.‬

‭This functionality will look similar to this:‬

‭I’ve created a demo video of the live sharing of‬‭cursors that can be watched‬‭here‬

‭Client-side‬

‭function‬‭handleIncomingMessage‬‭(message) {‬
‭const‬‭{‬‭type‬‭, data } = message;‬
‭if‬‭(‬‭type‬‭===‬‭'cursorMove'‬‭) {‬

‭updateCursor(data.userId, data.cursorPosition);‬
‭updateCursorUI();‬

‭}‬
‭}‬
‭function‬‭sendCursorMove‬‭(cursorPosition) {‬

‭const‬‭message = {‬
‭type‬‭:‬‭'cursorMove'‬‭,‬
‭data: { cursorPosition },‬

‭};‬
‭WebSocket.send(‬‭JSON‬‭.stringify(message));‬

‭}‬

‭function‬‭updateCursor‬‭(userId, cursorPosition) {‬
‭// Update the cursor position for the user with‬‭userId‬

https://youtu.be/OCVT-d0FqrA

‭}‬
‭function‬‭updateCursorUI‬‭() {‬

‭// Update the UI to reflect the cursor positions‬
‭}‬
‭document‬‭.addEventListener(‬‭'mousemove'‬‭, (event) =>‬‭{‬

‭const‬‭cursorPosition = { x: event.clientX, y: event.clientY‬‭};‬
‭sendCursorMove(cursorPosition);‬

‭});‬

‭Server-side‬

‭function‬‭broadcastCursorMove‬‭(roomId, userId, cursorPosition)‬‭{‬
‭const‬‭message = {‬

‭type‬‭:‬‭'cursorMove'‬‭,‬
‭data: { userId, cursorPosition },‬

‭};‬
‭}‬

‭WebSocketServer.on(‬‭'connection'‬‭, (socket) => {‬
‭socket.on(‬‭'message'‬‭, (message) => {‬

‭const‬‭{‬‭type‬‭, data } = message;‬
‭if‬‭(‬‭type‬‭===‬‭'cursorMove'‬‭) {‬

‭// Broadcast the cursor movement to all clients‬‭in the room‬
‭broadcastCursorMove(socket.roomId, socket.userId,‬

‭data.cursorPosition);‬
‭}‬

‭});‬
‭});‬

‭Part 3: Data Management and Finalization‬‭.‬

‭●‬ ‭Implement logic to handle conflicts that may arise when multiple users try to‬
‭modify the same part of the project.‬

‭As we use CRDT techniques to synchronize the changes, it handles the conflicts‬

‭on its own. But along with this, we would have to add our methods to handle the‬

‭conflicts.‬

‭For example, Mentor Walter Bender suggested that when applying concurrent‬

‭changes in the project made by users, we should give priority based on the order‬

‭in which they have joined.‬

‭Here is the overview of how we can implement it:‬

‭As we have already created the‬‭rooms‬‭object to store‬‭the information of the user‬

‭like‬‭username, unique user ID,‬‭and‬‭joinOrder‬‭,‬‭Using‬‭the CRDT, I’ll add the‬

‭logic to sort the changes based on the joining order and then apply them.‬

‭const‬‭ydoc =‬‭new‬‭Y.Doc();‬
‭const‬‭provider =‬‭new‬‭WebsocketProvider(‬‭'ws://localhost:3000'‬‭,‬
‭'my-room'‬‭, ydoc);‬

‭let‬‭joinOrder = [‬‭// user's joining order along with‬‭their id];‬

‭function‬‭applyChanges‬‭(changes) {‬
‭changes.sort((a, b) => joinOrder.indexOf(a.userId) -‬

‭joinOrder.indexOf(b.userId));‬

‭for‬‭(‬‭let‬‭change‬‭of‬‭changes) {‬
‭applyChange(change);‬

‭}‬

‭}‬
‭function‬‭applyChange‬‭(change) {‬

‭// add logic to apply the change‬
‭}‬
‭provider.on(‬‭'update'‬‭, (update) => {‬

‭applyChanges(update);‬
‭});‬

‭●‬ ‭Implement functionality to save the final changes to the original project when all‬
‭users quit the session.‬

‭When users are done with the collaboration, they’ll have to save the final project.‬

‭For this, I’ll implement the functionality in the following manner:‬

‭1.‬ ‭By now we’d have already determined the criteria (quit/save/exit) that‬

‭users have finished collaborating, we would use this as a signal to finalize‬

‭the project.‬

‭2.‬ ‭After this, we’ll make sure that the project state in all the clients' browsers‬

‭is in syn.‬

‭3.‬ ‭Then, we collect the project data from one of the users (most preferably‬

‭from the one who initiated the collaboration).‬

‭4.‬ ‭Finally, we will make an API call to store the project on the server.‬

‭5.‬ ‭Lastly, A notification will be sent to all the peers that “Project saved”.‬

‭●‬ ‭Provide a way to terminate the common space and end the session.‬

‭As I mentioned above, we’ll provide the users a button to “Stop the session”. If‬

‭a user stops the session from his end, he will have a local copy of the project‬

‭with the last synced changes at the point he stopped the session.‬

‭Lastly, We’ll save the final changes when the last person leaves the room or‬

‭when there’s no one in the room. Here is a simple prototype of this:‬

‭const‬‭WebSocket =‬‭require‬‭(‬‭'ws'‬‭);‬
‭const‬‭Y =‬‭require‬‭(‬‭'yjs'‬‭);‬
‭require‬‭(‬‭'y-memory'‬‭)(Y);‬

‭const‬‭wss =‬‭new‬‭WebSocket.Server({ port: 8080 });‬
‭const‬‭ydoc =‬‭new‬‭Y.Doc();‬
‭const‬‭room = ydoc.getMap(‬‭'room'‬‭);‬
‭const‬‭users = ydoc.getMap(‬‭'users'‬‭);‬

‭wss.on(‬‭'connection'‬‭, (ws) => {‬
‭const‬‭userId = uuidv4();‬
‭users.set(userId, { connected:‬‭true‬‭});‬
‭ws.send(‬‭JSON‬‭.stringify({‬‭type‬‭:‬‭'userId'‬‭, userId‬‭}));‬

‭ws.on(‬‭'message'‬‭, (message) => {‬
‭const‬‭data =‬‭JSON‬‭.parse(message);‬

‭switch‬‭(data.type) {‬
‭case‬‭'disconnect'‬‭:‬

‭users.set(userId, { connected:‬‭false‬‭});‬
‭checkEmptyRoom();‬
‭break‬‭;‬
‭}‬

‭});‬

‭ws.on(‬‭'close'‬‭, () => {‬
‭users.set(userId, { connected:‬‭false‬‭});‬

‭checkEmptyRoom();‬
‭});‬

‭});‬

‭function‬‭checkEmptyRoom‬‭() {‬
‭if‬‭(‬‭Array‬‭.from(users.values()).some(user => user.connected))‬‭{‬

‭return‬‭;‬
‭}‬
‭wss.clients.forEach(client => {‬

‭if‬‭(client.readyState === WebSocket.OPEN) {‬
‭client.close();‬

‭}‬
‭});‬

‭}‬

‭Collaboration Flowchart‬

‭1- Overall Workflow of the collaboration‬

‭2- Real-time collaboration Workflow‬

‭Possible Edge Cases‬

‭●‬ ‭What if multiple users make changes at the same time?‬

‭For this, we are already using the CRDT so it will be handled by it. If the need‬

‭arises, I’ll consider implementing custom solutions for it like setting up‬

‭priority rules, using timestamps and version vectors, etc.‬

‭●‬ ‭What if a peer lost the network connection unexpectedly?‬

‭To deal with this scenario, when a peer loses its network, we will make‬

‭attempts to reconnect the peer to the network. This can be done using the‬

‭WebSockets reconnection mechanism.‬

‭If reconnection attempts fail, we can switch the peer to an offline mode‬

‭where local changes are still allowed but not synchronized with other peers.‬

‭Once the network connection is restored, we can attempt to synchronize the‬

‭changes.‬

‭Until the peer reconnects to the network, we can buffer the changes made‬

‭by the peer locally and Once the connection is back, the buffered changes‬

‭can be synchronized with other peers.‬

‭If the peer makes conflicting changes while offline, we can use conflict‬

‭resolution strategies to resolve conflicts once the connection is restored.‬

‭Also when the peer loses the network, a message about network loss will be‬

‭displayed on its screen.‬

‭If the network connection cannot be restored after multiple attempts, we‬

‭may choose to terminate the collaboration session and notify other peers‬

‭about the disconnected peer.‬

‭●‬ ‭What if a peer joins late and a lot of changes have been made in the original‬

‭project?‬

‭As per the discussions with mentors, the ideal thing to do in this scenario‬

‭would be to show the current state of the project to the new joiner‬

‭irrespective of when they have joined in the duration of the session.‬

‭●‬ ‭What should be the limit of peers to join the common space?‬

‭Once the real-time collaboration is implemented, We’ll experiment with the‬

‭limits of this, and with its insights and discussion with the mentors I will‬

‭implement it as per the conclusion.‬

‭●‬ ‭What if the user exits from the common space and joins after some time?‬

‭In such a case when the user exits in the middle of the collaboration and‬

‭wants to join after some time, We can show them the current state of the‬

‭project. As of now, the way to rejoin the session is only to click on that‬

‭shared link again. When they click the link they will be joined as a new‬

‭collaborator.‬

‭●‬ ‭What if the user closes the window by mistake?‬

‭If the user closes the window by mistake, they will be disconnected from the‬

‭room. As we don’t store the user information permanently, So a simple and‬

‭easy way to rejoin the session can be to click on that link and join as a new‬

‭collaborator as described above.‬

‭These are the few edge cases I have in my mind. I will discover and discuss more‬

‭edge cases with mentors and will consider the implementation for them. Also, some‬

‭edge cases may arise when we implement the functionalities mentioned above.‬

‭Those edge cases can be considered at the same time of implementation.‬

‭Note:‬‭While making this proposal, I have taken the‬‭reference from‬‭socket.io‬‭and‬‭Y.js‬
‭docs‬‭.‬‭Along with this, I’ve used the proposal template‬‭provided by the‬‭Sugar Labs‬‭.‬

‭Implementation Plan‬

‭GSoC is around about 12 weeks in duration, with about 25 days of Community‬

‭Bonding Period in Addition.‬

‭I will be spending‬‭80% of the time on implementing‬‭the functionalities‬‭in this‬

‭project,‬‭10% of the time on fixing the bugs‬‭left out‬‭in the current version of the project,‬

‭and the‬‭remaining 10% of the time on testing the app‬‭and preparing the Wiki and‬

‭writing documentation for the project‬‭.‬

‭The detailed timeline is linked below.‬

https://socket.io/docs/v4/tutorial/introduction
https://yjs.dev/
https://yjs.dev/
https://github.com/sugarlabs/GSoC/blob/master/Template.md

‭Timeline‬ ‭Start‬
‭Date‬

‭End Date‬ ‭Task‬

‭Community‬
‭Bonding‬

‭1 May‬ ‭26 May‬ ‭Further requirements gathering, reading‬
‭docs, and getting familiar with the‬
‭codebase‬

‭27 May‬ ‭29 May‬ ‭Setting up the route for the collaboration‬
‭room‬

‭30 May‬ ‭3 June‬ ‭Implementing the functionality to start a‬
‭session and create a common space for‬
‭collaboration‬

‭4 June‬ ‭8 June‬ ‭Implementing ID assignments and‬
‭managing their connection to the session‬

‭9 June‬ ‭15 June‬ ‭Implementing the logic to connect with‬
‭friends to the common room when they‬
‭click on the shared link‬

‭16 June‬ ‭22 June‬ ‭Adding UI for “Collaborate”, “Start a‬
‭Session”, and “Send Link” functionalities‬

‭23 June‬ ‭27 June‬ ‭Integrating UI with its respective‬
‭functionalities‬

‭28 June‬ ‭5 July‬ ‭Developing the interface for the‬
‭collaboration room that includes a‬
‭common space, a chat section, a display‬
‭of users who joined, and a stop button‬

‭Phase 1 Evaluation‬ ‭8 July‬ ‭12 July‬

‭6 July‬ ‭12 July‬ ‭Implementing the functionality to share‬
‭the project state among all the users‬
‭connected in the common space‬

‭13 July‬ ‭27 July‬ ‭Implementing the logic to handle the‬

‭real-time update to the project when‬
‭changes are made by one of the‬
‭connected users‬

‭28 July‬ ‭1 August‬ ‭Adding the logic to share the position and‬
‭movement of the cursor among all the‬
‭users‬

‭2 August‬ ‭8 August‬ ‭Implementing the functionality to handle‬
‭the conflicts that may arise during the‬
‭collaboration.‬

‭9 August‬ ‭15 August‬ ‭Implementing the functionality to save the‬
‭final changes to the original project when‬
‭finalization gets triggered‬

‭16 August‬ ‭20 August‬ ‭Integration of the session termination and‬
‭afterward activities‬

‭Phase 2 Evaluation‬ ‭19 August‬ ‭26 August‬

‭21 August‬ ‭26 August‬ ‭Preparing Documentation, Wiki and FAQs,‬
‭and a Webcast on the Final Product.‬

‭Future Work‬

‭In the future, I am going to work on‬

‭1.‬ ‭improving the current real-time collaboration‬
‭2.‬ ‭implementing other functionalities like maintaining the history of the changes‬

‭and adding a section where users would be able to search what rooms are‬
‭active to collaborate.‬

‭3.‬ ‭handling some other edge cases that may arise when actual users use this‬

‭and provide feedback.‬

‭Also, I am very interested in the Music Blocks V4 project so I will work on it as well.‬

‭I can assure you that if I get selected to work at Sugar Labs this summer, I definitely‬

‭will do my best to make this project successful and would love to continue working‬

‭with Sugar Lab’s other projects even after the summer.‬

‭Also for some reason, if I am not selected this year even then I’ll contribute to this‬

‭and other projects as much as possible and retry again next year.‬

‭Looking forward to working with you.‬

‭Thanks, And Regards‬

‭Ajeet Pratap Singh‬

