
 Google Summer of Code 2024
 Add real-time collaboration to Music Blocks

 Ajeet Pratap Singh

 Section 1: About You

 My name is Ajeet Pratap Singh. I am a second-year undergraduate student at the

 Chhatrapati Shahu Ji Maharaj University, Kanpur, pursuing a Bachelor’s in Computer

 Science as my major.

 What project are you applying for?

 Add real-time collaboration to Music Blocks.

 Why are you interested in working with Sugar Labs? And how this project will

 impact Sugar Labs?

 I started contributing to Sugar Labs in November 2023. I started contributing to Sugar

 Labs because I wanted to explore the open-source community and contribute to

 projects. Contributing to Sugar Labs helped me understand its codebase and

 whenever I got stuck mentors were readily available for help.

 Other than contributions, Playing with Music Blocks is fun. Before this, I had not

 experienced such an environment where we could learn concepts of music and

 programming and play altogether. I have also made a project in Music Blocks named

 Elephant Ring Song .

 But while playing with Music Blocks, One thing I missed was my friends. It would be a

 lot of fun if I’d be able to connect with my friends and play with them.

https://musicblocks.sugarlabs.org/index.html?id=1711535673834024&run=True

 So, Following this, I want to use my familiarity with the codebase and love to play with

 Music Blocks to add Real-time collaboration to Music Blocks . This project will

 impact Music Blocks in the following ways:-

 1. Enhanced Learning Experience : Real-time collaboration allows learners to

 work together on Music Blocks projects, fostering collaboration and teamwork.

 This can lead to a richer learning experience, as students can share ideas,

 learn from each other, and create music collaboratively.

 2. Increased Engagement : Collaborative features can make Music Blocks more

 engaging for students. The ability to work together in real time can make

 learning more interactive and fun, encouraging students to spend more time

 exploring and creating music.

 3. Broader Reach : By enabling real-time collaboration, Music Blocks can

 potentially reach a larger audience. Students and teachers from around the

 world can collaborate on projects, regardless of their location, leading to a

 more diverse and inclusive learning environment.

 4. Feedback and Improvement : Real-time collaboration can also facilitate

 feedback and improvement. Teachers can easily monitor students' progress,

 provide feedback, and offer guidance, helping students improve their musical

 skills and understanding of programming concepts.

 Overall, adding real-time collaboration to Music Blocks aligns with Sugar Labs' mission

 of providing innovative educational tools and fostering a collaborative learning

 community. It can help enhance the effectiveness of the Sugar Learning Platform and

 contribute to a more engaging and interactive learning experience for students

 worldwide.

 Prior Experience

 I've been doing web development for the past two years, and I'm a web developer who

 predominantly uses JavaScript, TypeScript, React, Tailwind, and its other libraries and

 frameworks. For the past 4 to 5 months, I've been contributing to Sugar Labs as a

 contributor in Music Blocks. Some of my contributions are mentioned below.

 Links to Pull Requests

 ● #3461 Implemented responsive Tooltips in JavaScript Editor.

 ● #3580 Update the HTML file with the README file

 ● #3608 Optimized code Using a Function

 ● #3507 Fixed Creation of Duplicate Phrases in Phrase Maker.

 ● #3627 Fixed the inappropriate position of the cursor in the Input box

 ● #3728 Fixed the responsiveness of the Top-right corner Buttons.

 ● #3731 Implemented Ctrl+z shortcut for Undo functionality

 ● #3468 Fixed the appearance of the Trashcan by repositioning it.

 ● #3440 Fixed Typos in the README file

 A complete list of my PRs can be found here .

 Also, I have opened 18 issues and fixed them which can be found here .

 Academic Experience and Projects

https://github.com/sugarlabs/musicblocks/pull/3461
https://github.com/sugarlabs/musicblocks/pull/3580
https://github.com/sugarlabs/musicblocks/pull/3608
https://github.com/sugarlabs/musicblocks/pull/3507
https://github.com/sugarlabs/musicblocks/pull/3627
https://github.com/sugarlabs/musicblocks/pull/3728
https://github.com/sugarlabs/musicblocks/pull/3731
https://github.com/sugarlabs/musicblocks/pull/3468
https://github.com/sugarlabs/musicblocks/pull/3440
https://github.com/sugarlabs/musicblocks/pulls?q=is%3Apr+author%3Aapsinghdev+is%3Aclosed
https://github.com/sugarlabs/musicblocks/issues?q=is%3Aissue+is%3Aclosed+author%3Aapsinghdev

 As part of my Academic learning, I have made the following projects Projects.

 ● IndiaPay(An online payment app) - This app is inspired by paytm.com that lets

 users create accounts and send money online securely.

 The front end is developed using React and Tailwind CSS, while the back end is

 built with JavaScript and Node.js. Credentials security is implemented using

 bcryptjs and JSON web token, with MongoDB and the Mongoose library utilized

 for the database. Express.js serves as the server framework, Zod for input

 validation, and Axios for request handling.

 ● GoFoods - The website enables users to browse food items online, add them to

 a cart, and place orders. To develop this platform, JavaScript and Node.js are

 utilized for the back end, React for the front end, MongoDB for the database,

 and Express.js for the server.

 Project Size

 I am applying for a large project (~350 hours).

 Project Timeframe

 01 May 2024 to 03 September 2024

 Contact info and timezone(s)

 Primary Email : ajeetpratap517@gmail.com

 Secondary Email : ajeetpratapsingh351@gmail.com

 Contact Number: +91 6386097859

 Github: @apsinghdev

https://github.com/apsinghdev/Paytm
https://paytm.com/
https://github.com/apsinghdev/GoFoods-Website
mailto:ajeetpratap517@gmail.com
mailto:ajeetpratapsingh351@gmail.com
https://github.com/apsinghdev

 Matrix Id: @ajeit2023:matrix.org

 Language: Hindi (Native), English (Fluent)

 Location : Kanpur, India

 Time Zone : IST (GMT+5:30)

 Preferred mode of Communication: Email, Google Meet, Jitsi, Matrix

 Time Commitment

 I am having summer vacation from 5th May to 26th June. In this time frame, I would

 be able to devote ~40-45 hrs/week . After that, I would be able to devote ~20-30

 hrs/week. which may increase if the need arises. I am working on the GSoC project

 from 27th May to 26th August timeframe (Note: can be extended if the need arises).

 S. No Dates Days (Total) Time Commitment

 1. 27th May - 30th June Mon-Sun (7) 6 hr/day (Mon-Sun)

 2. 30th June - 26th Aug Mon-Sun (7) 3 hr/day (Mon-Fri)
 5 hr/day (Sat-Sun)

 Estimated Total Working Days : 90

 Estimated Hours : 350 hours (This may change as per requirements).

 To report my progress, I will provide detailed progress updates every week, outlining the

 tasks completed, challenges faced, and plans for the upcoming week. These updates

 will be shared on the project's mailing list or designated communication channel.

 Technical Requirements

 According to the discussion on Music Blocks’s Matrix (Element) server, the

 expected libraries to use for real-time collaboration include:

 1. Socket.io

 2. Y.js .

 Socket.io can’t handle conflicts directly. To implement conflict management in

 collaboration, we can use Conflicts-Free Replicated Data Types (CRDT). I made a small

 Prototype that uses WebSockets for real-time collaboration.

 A chat feature can also be implemented using the same libraries. Here is an example of

 socket.io’s GitHub page implementing the same.

 Benefits of using Socket.io

 ● Real-time Communication: Socket.io enables real-time, bidirectional

 communication between clients and servers, crucial for collaborative applications.

 ● Event-Based Architecture: Its event-driven model simplifies handling various user

 interactions and updates.

 ● Cross-Browser Compatibility: Works across different browsers, ensuring a

 consistent experience for all users.

 ● Scalability: Supports scaling to accommodate a large number of concurrent

 users or connections.

 ● Error Handling: Provides robust error handling, ensuring reliable communication

 even in challenging conditions.

 ● Room Support: Allows grouping clients into rooms, facilitating targeted

 messaging and collaboration.

 ● Low Latency: Minimizes latency, providing a more responsive and engaging user

 experience.

http://socket.io/
https://yjs.dev/
https://github.com/apsinghdev/drawRTC
https://github.com/socketio/socket.io/blob/main/examples/chat/public/main.js

 ● Ease of Use: Provides a simple API that abstracts the complexities of

 WebSokets, making it easy to integrate into the application.

 ● Versatility: This can be used in various types of applications, from our chat

 application to real-time project sharing/editing.

 Benefits of using Y.js

 ● Conflict Resolution: Y.js uses CRDTs to handle concurrent edits, ensuring that all

 users see a consistent view of the document without conflicts.

 ● Offline Editing: Users can edit the document even when offline, and changes will

 be synced automatically when the connection is restored.

 ● Scalability: Y.js is designed to scale to a large number of users collaborating on a

 document simultaneously.

 ● Efficiency: Y.js uses efficient data structures and algorithms to minimize

 bandwidth and processing requirements, making it suitable for low-latency

 applications.

 ● Customizable: Y.js provides a flexible API that allows developers to customize

 and extend its functionality to meet specific requirements.

 ● Conflict Resolution Strategies: Y.js offers different conflict resolution strategies,

 allowing developers to choose the most suitable approach based on their

 application requirements. Strategies include last-write-wins, highest-priority-wins,

 and more.

 In a few of the previous discussions, mentors mentioned Jabber as the technology for

 collaboration. So, whether to use WebSockets or Jabber or rewrite something similar

 to that for Music Blocks is still under consideration. The final technology to be used

 will be decided after discussions with mentors.

 Other Summer Obligations,

 I have no commitments in the summer. I’ll be staying back home for most of it. I have

 mentioned my typical working hours above and on average will be able to spend 40-45

 hours per week on the project.

 Communication Channels

 I am active on Emails and the Matrix (Element) app. I can work with whatever platform

 my mentor prefers. Meetings can be held every week to discuss progress in the project.

 Section 2: Proposal Details

 Problem Statement
 Final Target

 Add real-time collaboration to Music Blocks

 Target Audience
 ● Music Blocks Users

 Core User Need ● Real-time Collaboration : Users need the ability to collaborate on

 Music Blocks projects with others in real-time, sharing code

 stacks and graphical output instantly.

 ● Synchronization : Users require a high degree of synchronization

 between their projects across different browsers, ensuring that

 changes made by one user are immediately reflected for all

 collaborators with low latency.

 Section 2.1: WHAT (Key Milestones)

 1. Invite friends to join the project.

 a. Start a session

 b. Generate a shareable link to invite

 2. Create a common space to collaborate.

 a. Give a unique ID to the user (the session creator)

 b. Create an interface for collaboration

 c. The interface can have the following elements:

 i. A list of friends who’ve joined

 ii. A chat section for the users

 iii. Common space for collaboration

 iv. Names of the users on their interfaces

 v. A stop button

 3. Connect friends to the common space.

 a. Send the friends to the common space when they click on the link

 b. Give each friend a unique ID

 c. Give the friends a way to set their display name (Username)

 d. Show the new joiners in the list

 4. Share the same state of the project among all the friends.

 a. Share the project among all in the common space

 b. Share the position and movement of the cursor (with its username)

 among all the friends

 5. Collaborate in real-time with low latency.

 a. Enable updates to the project for all the friends when changes are made by

 one friend

 b. Handle the possible conflicts

 6. Save the final changes to the original project.

 a. Save the final project when all the users quit the session

 b. Handle edge cases

 c. Terminate the session

 Section 2.2: HOW

 I have divided this project into three parts.

 1. Implementation of User Management and Collaboration Setup

 2. Implementation of Real-Time Collaboration Interface and Activity

 3. Data Management and Finalization

 Part 1: Implementation of User Management and Collaboration

 Setup.

 User Management and Collaboration Setup can be implemented by following these steps.

 ● Setup route that serves the common room

 For this, I will have to define a new route on the server side that will
 host the common space. That route will look something similar to
 this:

 https: //musicblocks.sugarlabs .org // #room=${room_id},${user_id}

 Where room_id will be the unique ID of the room where users will collaborate

 and user_id will be the unique ID given to the creator of the session.

 ● Implement the functionality to start a new session and create a common

 space for collaboration.

 For the collaboration, the standard practice is to start a session so that the

 changes in the project can be tracked. Also, a session works as a flag for the

 collaboration that can be used to start/end certain activities when the

 collaboration starts/ends.

 To implement this functionality, I’ll emit a startSession event when the ‘Start

 a Session’ button is clicked. The code snippets below are the overview of this

 functionality.

 Server-side:

 const wss = new WebSocket.Server({ port: 3000 });
 const rooms = new Map();
 wss.on('connection' , (ws) => {

 ws.on('message' , (message) => {
 const data = JSON .parse(message);
 if (data.type === 'startSession') {

 const roomId = uuidv4();
 const userId = uuidv4();
 ws.send(JSON .stringify({ type : 'sessionCreated' , roomId, userId

 }));
 }});

 });

 Client-side

 const ws = new WebSocket('ws://localhost:3000');
 let isSessionOn = false ;
 let shareableLink;
 startASession.addeventlistener('click' , ()=>{

 ws.send(JSON .stringify({ type : 'startSession' }));

 })
 ws.onmessage = (event) => {

 const data = JSON .parse(event.data);
 if (data.type === 'sessionCreated') {

 const roomId = data.roomId;
 const userId = data.userId;
 shareableLink = createRoomLink(roomId, userId);
 isSessionOn = true ;

 }
 };

 ● Implement functionality to generate a shareable link that can be sent to

 friends to invite them to join the session.

 A function createRoomLink will be defined for it and it will return the link that

 we’ll share to invite users for collaboration.

 const createRoomLink = (roomId, userId) => {
 const link =

 ̀https://musicblocks.sugarlabs.com/#room= ${roomId} , ${userId} ̀ ;
 return link;

 };
 const roomLink = createRoomLink();

 Note: We can use the UUID module to generate unique ID’s for users and

 sessions.

 ● Implement logic to connect friends to the common space when they click on

 the shareable link.

 ● Assign each friend a unique ID and manage their connection to the session.

 When a user clicks on that shared link, the collaboration interface will be

 opened for them and a unique ID will be assigned. We‘ll store their unique IDs

 and joining orders in the rooms object for future use cases.

 Example:

 wss.on('connection' , (ws) => {
 ws.on('message' , (message) => {

 const data = JSON .parse(message);
 if (data.type === 'join') {

 const roomId = data.roomId;
 const userId = uuidv4();

 // Store the user ID and WebSocket connection in the room
 if (!rooms.has(roomId)) {

 rooms.set(roomId, new Map());
 }
 const room = rooms. get (roomId);
 const joiningOrder = room.size + 1 ;
 room. set (userId, { ws, joiningOrder });

 // Broadcast to all users in the room that a new user has joined
 rooms.get(roomId).forEach((userWs, id) => {

 if (id !== userId) {
 userWs.send(JSON .stringify({ type : 'userJoined' , userId }));

 }
 });

 }
 });

 });

 ● Add UI for “Collaborate”, “Start a Session” and “Send Link”

 functionalities:

 Collaborate button UI (similar to this)

 As we already have buttons like “Share Project”, “Open in Music

 Blocks”, and “Merge”, Besides these buttons, I’ll implement a similar

 one for “Collaborate” by the following practice.

 <a class = "project-icon tooltipped" data-position = "bottom"
 data-delay = "50" data-tooltip = " ${_("Collaborate")} "
 id = "global-project-collaborate-{ID}" ><i
 class = "material-icons" >share</i>

 Start a session card UI (similar to this)

 In order to add this UI, I’ll create a container div. Then a card div. And after adding the

 necessary elements I’ll add proper styling to make it perfect. The code snippet below

 is an example of the implementation of this UI.

 function startSessionCard () {
 const container = document .createElement('div');
 container.classList.add('card-container');
 document .body.appendChild(container);

 const card = document .createElement('div');
 card.classList.add('card');
 container.appendChild(card);

 const heading = document .createElement('h2');
 heading.textContent = 'Live collaboration' ;
 card.appendChild(heading);

 const description = document .createElement('p');
 description.textContent = 'Invite your friends to collaborate on your
 drawing' ;
 card.appendChild(description);

 const button = document .createElement('button');
 button.textContent = 'Start session' ;

 card.appendChild(button);

 container.style.display = 'flex' ;
 container.style.justifyContent = 'center' ;
 container.style.alignItems = 'center' ;
 container.style.height = '100vh' ;

 card.style.padding = '20px' ;
 card.style.border = '1px solid #ccc' ;
 card.style.borderRadius = '8px' ;
 card.style.textAlign = 'center' ;

 return button;
 }

 Send Link card UI (similar to this) -

 function inviteFriends () {
 const container2 = document .createElement('div');
 container2.classList.add('card-container');
 document .body.appendChild(container2);

 const card2 = document .createElement('div');
 card2.classList.add('card');
 container2.appendChild(card2);

 const closeButton = document .createElement('button');
 closeButton.textContent = '×' ;
 closeButton.classList.add('close-button');

 card2.appendChild(closeButton);

 closeButton.addEventListener('click' , () => {
 container2.remove();

 });

 const heading2 = document .createElement('h2');
 heading2.textContent = 'Live collaboration' ;
 card2.appendChild(heading2);

 const nameLabel = document .createElement('label');
 nameLabel.textContent = 'Your name:' ;
 card2.appendChild(nameLabel);

 const nameInput = document .createElement('input');
 nameInput.setAttribute('type' , 'text');
 card2.appendChild(nameInput);

 const linkContainer = document .createElement('div');
 card2.appendChild(linkContainer);

 const linkSpan = document .createElement('span');
 linkSpan.textContent = 'Link: ' ;
 linkContainer.appendChild(linkSpan);

 const linkInput = document .createElement('input');
 linkInput.setAttribute('type' , 'text');
 linkInput.value = shareableLink;
 linkInput.readOnly = true ;
 linkContainer.appendChild(linkInput);

 const copyButton = document .createElement('button');
 copyButton.textContent = 'Copy link' ;
 copyButton.addEventListener('click' , () => {

 linkInput.select();
 document .execCommand('copy');

 });

 linkContainer.appendChild(copyButton);
 }

 ● Integrate UI with its respective functionality.

 For the integration of “Collaborate” I would have to catch the button with ID

 global-project-collaborate-${this.id} and when it gets clicked, It

 would render the UI of “Start a Session” card and then I would access the

 “Start a Session” button from startSessionCard() function. When this

 button gets clicked it executes the collaborate method that would be

 defined in SessionStarter.

 frag.getElementById(̀global-project-collaborate-${this.id}`).addEventListe
 ner("click" , () => {

 const button = startSessionCard();
 button.addEventListener("click" , () => {
 inviteFriends();
 Planet.GlobalPlanet.SessionStarter.collaborate(this .id);

 });
 });

 Part 2: Implementation of Real-Time Collaboration Interface and
 Activity.

 After the part 1, I will implement Real-Time collaboration Interface and Activities in the
 following steps:

 ● Develop the frontend interface that could have the following elements

 1 . A list of joined friends

 For this, I would have to extract the friends' names from the room object I
 mentioned above and then show them on the screen.

 function getJoinedUsers () {
 let joinedUsers = [];
 rooms.forEach((room) => {

 room.users.forEach((user) => {
 const userName = user.username;
 joinedUsers.push(userName);
 });

 });
 return joinedUsers
 }

 2. A chat section

 Adding a chat feature will be pretty straightforward. To implement this, I would

 have to write code that fires chat event and messages from the client side and

 when the server catches the chat event it will emit the messages to all the peers

 connected in the collaboration room.

 Server-side

 const server = http.createServer();
 const io = new Server(server);

 io. on ('connection' , (socket) => {
 socket. on ('chat' , (message) => {
 socket.broadcast.emit('chat' , message);

 });

 socket. on ('disconnect' , () => {
 console .log('A user disconnected');

 });
 });

 Client-side (Browser)

 <!DOCTYPE html>
 <html lang = "en" >
 <head>

 <meta charset = "UTF-8" >
 <title> Music Blocks Chat </title>

 </head>
 <body>

 <ul id = "messages" >
 <form id = "form" >

 <input id = "input" autocomplete = "off" />
 <button id = "send" > Send </button>

 </form>

 <script
 src = "https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.3.2/socket.io.
 js" ></script>

 <script>
 const socket = io();
 const form = document .querySelector('form');
 const input = document .getElementById('input');
 const messages = document .getElementById('messages');
 form.addEventListener('submit' , (e) => {

 e.preventDefault();
 if (input.value) {

 socket.emit('chat' , input.value);
 input.value = '' ;

 }
 });

 socket.on('chat' , (message) => {
 const item = document .createElement('li');
 item.textContent = message;
 messages.appendChild(item);
 window .scrollTo(0, document .body.scrollHeight);

 });
 </script>

 </body>
 </html>

 3. Common space for collaboration

 This will be the most significant part of the interface, containing the project

 on which users will collaborate. As far as I know, we won't need to add any

 extra UI for this part, as it is supposed to be like a container that will contain

 the project. However, I'll discuss with mentors how this common space

 should look and implement it accordingly.

 4. A button to save/Quit/Exit the project

 After collaborating on a project, The users would need to

 stop-the-session/save-the-project. For that, I’d add a button similar to this:

 When this button gets clicked, It will trigger the handleStopSession() function,

 and that function will execute the logic to exit the user from the session and save

 a local copy of the project with the last synced changes.

 Also as per the discussions with mentors, we won’t have to add “ownership” for a

 project so we’ll save the changes of the project when the last user leaves the

 room or there is no one in the room. A simple prototype of the above functionality

 is presented below.

 const stopSessionButton = document .createElement('button');
 stopSessionButton.textContent = 'Stop Session' ;
 stopSessionButton.addEventListener('click' , handleStopSession);

 document .body.appendChild(stopSessionButton);
 function handleStopSession () {

 console .log('Session stopped');
 }

 function handleStopSession () {
 mergeChanges(projectData, lastSyncedChanges);
 saveProjectToLocal(projectData);
 // notify others of this exit

 }
 function mergeChanges (projectData, changes) {

 //We’ll apply CRDT merge strategies here
 Object .assign(projectData, changes);

 }
 function saveProjectToLocal (projectData) {

 localStorage.setItem('projectData' , JSON .stringify(projectData));
 }

 Note: The final list of what elements are needed for the collaboration interface is

 yet to be discussed with mentors and after the discussion, I will finalize and

 implement them.

 ● Implement functionality to share the project state among all friends in the

 common space.

 After the user starts/joins the session, we have to make the ‘common space’ and

 the ‘project’ (on which the user has initiated the collaboration) available to the

 user. To achieve this, On a high level, I would create a function

 startCollaboration() that will serve two main purposes:

 1. Render the “Collaboration Room” UI for the user that includes

 a. A display to show the list of friends who joined

 b. A chat section to chat with them

 c. A “Common space” to collaborate

 d. An exit/save button

 2. Load that project from the server and Render it in the “Common space”.

 Example:

 function startSession () {
 setInterface(); // Create the user interface
 setupProject(); // Load and render the project

 }

 function setInterface () {
 // Here the Interface components I mentioned above will be called

 }
 function setupProject () {

 const projectId = '1710428168192027' ;
 const url =

 ̀https://musicblocks.sugarlabs.org/index.html?id=${projectId}&run=True`
 ;

 fetch(url)
 .then(response => response.text())
 .then(html => {
 const commonSpace = document .getElementById('common-space');

 commonSpace.innerHTML = html;
 })
 .catch(error => {

 console .error('Error loading project:' , error);
 });

 }

 ● Handle real-time updates to the project when changes are made by one of the
 friends.

 As discussed with mentors, we are going to use client-server architecture for the

 collaboration. The overview of its implementation would be like this:

 1. First, I’ll initialize the Yjs and access the WebSocket server.

 2. After that, I’ll have to create a shared data type (e.g., Y.Map, Y.Array)

 representing the document being collaborated on.

 3. When the user makes a change to the document, those changes will be

 applied to the local Yjs data type.

 4. As Yjs automatically generates CRDT operations to represent the change, It

 will emit an update event.

 5. After this, those CRDT operations will be sent over the WebSocket

 connections to the server.

 6. Now we’ll have to Listen for incoming CRDT operations from other clients

 over the WebSocket connection.

 7. And apply these operations to the local Yjs data type to reflect changes

 made by other users.

 8. Finally, As Yjs handles the merging of concurrent changes automatically

 based on the CRDT operations, All clients will receive and apply the same set

 of operations, ensuring consistent document states across all clients.

 The following snippets are the prototype of the above steps:

 Client-side

 const ydoc = new Y.Doc();
 const provider = new WebsocketProvider('ws://localhost:3000' ,
 'my-room' , ydoc);

 const ymap = ydoc.getMap('project');

 ymap.observe((event)=>{
 console .log(event)

 })

 ymap.set('key' , 'value');

 // Send changes over WebSocket
 provider.on('update' , (update) => {

 sendUpdateToServer(update);
 });

 // Receive changes from WebSocket
 provider.on('message' , (message) => {

 applyUpdateFromServer(message);
 });

 Server-side

 const WebSocket = require ('ws');
 const { Y, WebsocketProvider } = require ('yjs');
 const ydoc = new Y.Doc();
 const wss = new WebSocket.Server({ port: 3000});

 wss.on('connection' , (ws) => {
 const provider = new WebsocketProvider(ws, ydoc, 'my-room');

 provider.on('update' , (update) => {
 Y.applyUpdate(ydoc, update);

 // Broadcast the update to all other clients
 wss.clients.forEach((client) => {

 if (client !== ws && client.readyState === WebSocket.OPEN) {
 client.send(JSON .stringify(update));

 }
 });

 });

 // Handle disconnection
 ws.on('close' , () => { // cleanup code });

 });

 ● Implement functionality to share the position and movement of the cursor
 among all friends in real time.

 As of now, we’ll already have the users stored with their unique IDs and

 usernames, now I’ll implement a web socket event to share the position of the

 cursor and username of a particular user among all the peers connected on a

 project. As clarified by the mentors, It will be helpful for the peers to check where

 their friends are heading without explicitly asking them in the chat. It will make

 the collaboration smoother and joyful.

 This functionality will look similar to this:

 I’ve created a demo video of the live sharing of cursors that can be watched here

 Client-side

 function handleIncomingMessage (message) {
 const { type , data } = message;
 if (type === 'cursorMove') {

 updateCursor(data.userId, data.cursorPosition);
 updateCursorUI();

 }
 }
 function sendCursorMove (cursorPosition) {

 const message = {
 type : 'cursorMove' ,
 data: { cursorPosition },

 };
 WebSocket.send(JSON .stringify(message));

 }

 function updateCursor (userId, cursorPosition) {
 // Update the cursor position for the user with userId

https://youtu.be/OCVT-d0FqrA

 }
 function updateCursorUI () {

 // Update the UI to reflect the cursor positions
 }
 document .addEventListener('mousemove' , (event) => {

 const cursorPosition = { x: event.clientX, y: event.clientY };
 sendCursorMove(cursorPosition);

 });

 Server-side

 function broadcastCursorMove (roomId, userId, cursorPosition) {
 const message = {

 type : 'cursorMove' ,
 data: { userId, cursorPosition },

 };
 }

 WebSocketServer.on('connection' , (socket) => {
 socket.on('message' , (message) => {

 const { type , data } = message;
 if (type === 'cursorMove') {

 // Broadcast the cursor movement to all clients in the room
 broadcastCursorMove(socket.roomId, socket.userId,

 data.cursorPosition);
 }

 });
 });

 Part 3: Data Management and Finalization .

 ● Implement logic to handle conflicts that may arise when multiple users try to
 modify the same part of the project.

 As we use CRDT techniques to synchronize the changes, it handles the conflicts

 on its own. But along with this, we would have to add our methods to handle the

 conflicts.

 For example, Mentor Walter Bender suggested that when applying concurrent

 changes in the project made by users, we should give priority based on the order

 in which they have joined.

 Here is the overview of how we can implement it:

 As we have already created the rooms object to store the information of the user

 like username, unique user ID, and joinOrder , Using the CRDT, I’ll add the

 logic to sort the changes based on the joining order and then apply them.

 const ydoc = new Y.Doc();
 const provider = new WebsocketProvider('ws://localhost:3000' ,
 'my-room' , ydoc);

 let joinOrder = [// user's joining order along with their id];

 function applyChanges (changes) {
 changes.sort((a, b) => joinOrder.indexOf(a.userId) -

 joinOrder.indexOf(b.userId));

 for (let change of changes) {
 applyChange(change);

 }

 }
 function applyChange (change) {

 // add logic to apply the change
 }
 provider.on('update' , (update) => {

 applyChanges(update);
 });

 ● Implement functionality to save the final changes to the original project when all
 users quit the session.

 When users are done with the collaboration, they’ll have to save the final project.

 For this, I’ll implement the functionality in the following manner:

 1. By now we’d have already determined the criteria (quit/save/exit) that

 users have finished collaborating, we would use this as a signal to finalize

 the project.

 2. After this, we’ll make sure that the project state in all the clients' browsers

 is in syn.

 3. Then, we collect the project data from one of the users (most preferably

 from the one who initiated the collaboration).

 4. Finally, we will make an API call to store the project on the server.

 5. Lastly, A notification will be sent to all the peers that “Project saved”.

 ● Provide a way to terminate the common space and end the session.

 As I mentioned above, we’ll provide the users a button to “Stop the session”. If

 a user stops the session from his end, he will have a local copy of the project

 with the last synced changes at the point he stopped the session.

 Lastly, We’ll save the final changes when the last person leaves the room or

 when there’s no one in the room. Here is a simple prototype of this:

 const WebSocket = require ('ws');
 const Y = require ('yjs');
 require ('y-memory')(Y);

 const wss = new WebSocket.Server({ port: 8080 });
 const ydoc = new Y.Doc();
 const room = ydoc.getMap('room');
 const users = ydoc.getMap('users');

 wss.on('connection' , (ws) => {
 const userId = uuidv4();
 users.set(userId, { connected: true });
 ws.send(JSON .stringify({ type : 'userId' , userId }));

 ws.on('message' , (message) => {
 const data = JSON .parse(message);

 switch (data.type) {
 case 'disconnect' :

 users.set(userId, { connected: false });
 checkEmptyRoom();
 break ;
 }

 });

 ws.on('close' , () => {
 users.set(userId, { connected: false });

 checkEmptyRoom();
 });

 });

 function checkEmptyRoom () {
 if (Array .from(users.values()).some(user => user.connected)) {

 return ;
 }
 wss.clients.forEach(client => {

 if (client.readyState === WebSocket.OPEN) {
 client.close();

 }
 });

 }

 Collaboration Flowchart

 1- Overall Workflow of the collaboration

 2- Real-time collaboration Workflow

 Possible Edge Cases

 ● What if multiple users make changes at the same time?

 For this, we are already using the CRDT so it will be handled by it. If the need

 arises, I’ll consider implementing custom solutions for it like setting up

 priority rules, using timestamps and version vectors, etc.

 ● What if a peer lost the network connection unexpectedly?

 To deal with this scenario, when a peer loses its network, we will make

 attempts to reconnect the peer to the network. This can be done using the

 WebSockets reconnection mechanism.

 If reconnection attempts fail, we can switch the peer to an offline mode

 where local changes are still allowed but not synchronized with other peers.

 Once the network connection is restored, we can attempt to synchronize the

 changes.

 Until the peer reconnects to the network, we can buffer the changes made

 by the peer locally and Once the connection is back, the buffered changes

 can be synchronized with other peers.

 If the peer makes conflicting changes while offline, we can use conflict

 resolution strategies to resolve conflicts once the connection is restored.

 Also when the peer loses the network, a message about network loss will be

 displayed on its screen.

 If the network connection cannot be restored after multiple attempts, we

 may choose to terminate the collaboration session and notify other peers

 about the disconnected peer.

 ● What if a peer joins late and a lot of changes have been made in the original

 project?

 As per the discussions with mentors, the ideal thing to do in this scenario

 would be to show the current state of the project to the new joiner

 irrespective of when they have joined in the duration of the session.

 ● What should be the limit of peers to join the common space?

 Once the real-time collaboration is implemented, We’ll experiment with the

 limits of this, and with its insights and discussion with the mentors I will

 implement it as per the conclusion.

 ● What if the user exits from the common space and joins after some time?

 In such a case when the user exits in the middle of the collaboration and

 wants to join after some time, We can show them the current state of the

 project. As of now, the way to rejoin the session is only to click on that

 shared link again. When they click the link they will be joined as a new

 collaborator.

 ● What if the user closes the window by mistake?

 If the user closes the window by mistake, they will be disconnected from the

 room. As we don’t store the user information permanently, So a simple and

 easy way to rejoin the session can be to click on that link and join as a new

 collaborator as described above.

 These are the few edge cases I have in my mind. I will discover and discuss more

 edge cases with mentors and will consider the implementation for them. Also, some

 edge cases may arise when we implement the functionalities mentioned above.

 Those edge cases can be considered at the same time of implementation.

 Note: While making this proposal, I have taken the reference from socket.io and Y.js
 docs . Along with this, I’ve used the proposal template provided by the Sugar Labs .

 Implementation Plan

 GSoC is around about 12 weeks in duration, with about 25 days of Community

 Bonding Period in Addition.

 I will be spending 80% of the time on implementing the functionalities in this

 project, 10% of the time on fixing the bugs left out in the current version of the project,

 and the remaining 10% of the time on testing the app and preparing the Wiki and

 writing documentation for the project .

 The detailed timeline is linked below.

https://socket.io/docs/v4/tutorial/introduction
https://yjs.dev/
https://yjs.dev/
https://github.com/sugarlabs/GSoC/blob/master/Template.md

 Timeline Start
 Date

 End Date Task

 Community
 Bonding

 1 May 26 May Further requirements gathering, reading
 docs, and getting familiar with the
 codebase

 27 May 29 May Setting up the route for the collaboration
 room

 30 May 3 June Implementing the functionality to start a
 session and create a common space for
 collaboration

 4 June 8 June Implementing ID assignments and
 managing their connection to the session

 9 June 15 June Implementing the logic to connect with
 friends to the common room when they
 click on the shared link

 16 June 22 June Adding UI for “Collaborate”, “Start a
 Session”, and “Send Link” functionalities

 23 June 27 June Integrating UI with its respective
 functionalities

 28 June 5 July Developing the interface for the
 collaboration room that includes a
 common space, a chat section, a display
 of users who joined, and a stop button

 Phase 1 Evaluation 8 July 12 July

 6 July 12 July Implementing the functionality to share
 the project state among all the users
 connected in the common space

 13 July 27 July Implementing the logic to handle the

 real-time update to the project when
 changes are made by one of the
 connected users

 28 July 1 August Adding the logic to share the position and
 movement of the cursor among all the
 users

 2 August 8 August Implementing the functionality to handle
 the conflicts that may arise during the
 collaboration.

 9 August 15 August Implementing the functionality to save the
 final changes to the original project when
 finalization gets triggered

 16 August 20 August Integration of the session termination and
 afterward activities

 Phase 2 Evaluation 19 August 26 August

 21 August 26 August Preparing Documentation, Wiki and FAQs,
 and a Webcast on the Final Product.

 Future Work

 In the future, I am going to work on

 1. improving the current real-time collaboration
 2. implementing other functionalities like maintaining the history of the changes

 and adding a section where users would be able to search what rooms are
 active to collaborate.

 3. handling some other edge cases that may arise when actual users use this

 and provide feedback.

 Also, I am very interested in the Music Blocks V4 project so I will work on it as well.

 I can assure you that if I get selected to work at Sugar Labs this summer, I definitely

 will do my best to make this project successful and would love to continue working

 with Sugar Lab’s other projects even after the summer.

 Also for some reason, if I am not selected this year even then I’ll contribute to this

 and other projects as much as possible and retry again next year.

 Looking forward to working with you.

 Thanks, And Regards

 Ajeet Pratap Singh

