
AI assistant for Pippy Activity

Proposal - Google Summer of Code 2024
Mukund Choudhary

Personal Details:

● Full Name: Mukund Choudhary
● Email: 21bcs055@smvdu.ac.in
● GitHub Username: hackorlyf
● Language: English
● Proficiency in programming languages: C, C++, Python & JavaScript
● Location and Timezone: India/ India Standard Time (GMT+5:30)

Introduction:

My name is Mukund Choudhary, and I am thrilled to present my proposal for the Google
Summer of Code 2024 with Sugar Labs. I am a passionate software developer hailing
from India, currently pursuing my studies in Bachelor of Technology in Computer
Science and Engineering at Shri Mata Vaishno Devi University. With a keen interest in
open-source development and a strong foundation in computer science, I am excited
about the opportunity to contribute to the Sugar Labs community and make a
meaningful impact through my proposed project.

Throughout my academic and professional journey, I have actively engaged in software
development projects, honing my skills in various programming languages and
technologies. My journey with Sugar Labs began with my enthusiasm for leveraging
technology to support learning and education, aligning closely with Sugar Labs' mission
to provide accessible and empowering tools for learners worldwide.

Beyond technical proficiency, I am deeply committed to fostering collaboration, learning,
and community engagement. I believe that the synergy of diverse perspectives and
expertise within the open-source community is instrumental in driving innovation and
creating impactful solutions. As such, I am eager to collaborate with mentors and fellow
contributors to bring the proposed project to fruition and contribute to the continued
success of Sugar Labs.



Contributions to Sugarlabs:

● #3805 (merged): Completed Documentation in js/planetInterface.js to specify its
correct use.

● #3801 (closed): Added JS style documentation for jquery-3.7.1.js (not to make
changes in library files).

● #3789 (merged): Rectified and Completed Documentation for block.js.
● #3787 (merged): Added and rectified JS documentation for the event listener

function and other functions.
● #1534 (closed): Too fast player in Maze Web activity.
● #3774 (merged): Added and Updated documentation in block.js.
● #3768 (merged): Completed JS Style documentation for base64Utils.js and

basicblocks.js.
● #3764 (merged): Complete JS style documentation for artwork.js.
● #9 (closed): Refactor input handling to prevent duplicate player instantiation.
● #3754 (merged): Added JS Style documentation for activity.js.
● #3746 (merged): Added JS style documentation for temperament.js.
● #3741 (merged): Added JSDoc style documentation for WidgetBlocks.js.
● #3729 (merged): Started documentation in WidgetBlocks.js.
● #1536 (bug): Found a bug in sugarizer. The player was spawned without face and

color from time to time.
● #3701 (merged): Removed an extra if condition which was added for the resizing

issue when the download toolbar used to appear at the bottom of Chrome. Also
added an Exceptional handler in activity.js.

● #3812 (merged): Started documentation in protoblocks.js.
● #3830 (open): Added and Completed documentation for various functions in

protoblocks.js.

Project Proposal:

Project Title:
Add an AI assistant to the Pippy Activity

Overview:
Pippy is the Sugar "learn to program in Python" activity. It comes with lots of examples
and has sufficient scaffolding such that a learner could modify an existing Sugar activity
or write a new one. This project aims to add "co-pilot"-like assistance to Pippy. A learner
should be able to ask the AI to provide example Python code to help them navigate the

https://github.com/sugarlabs/musicblocks/pull/3805
https://github.com/sugarlabs/musicblocks/pull/3801
https://github.com/sugarlabs/musicblocks/pull/3789
https://github.com/sugarlabs/musicblocks/pull/3787
https://github.com/llaske/sugarizer/issues/1534
https://github.com/sugarlabs/musicblocks/pull/3774
https://github.com/sugarlabs/musicblocks/pull/3768
https://github.com/sugarlabs/musicblocks/pull/3764
https://github.com/sugarlabs/sugarizer/pull/9
https://github.com/sugarlabs/musicblocks/pull/3754
https://github.com/sugarlabs/musicblocks/pull/3746
https://github.com/sugarlabs/musicblocks/pull/3741
https://github.com/sugarlabs/musicblocks/pull/3729
https://github.com/llaske/sugarizer/issues/1536
https://github.com/sugarlabs/musicblocks/pull/3701
https://github.com/sugarlabs/musicblocks/pull/3812
https://github.com/sugarlabs/musicblocks/pull/3830


language and explore possibilities in a more open way than the collection of Pippy
examples affords. (The Pippy examples are geared towards activity development, which
is largely how to navigate the basics of the Sugar toolkit and some GTK basics. This
would be much broader in scope.)

The challenge, beyond the plumbing, is to design and implement a sensible workflow
such that the AI is helpful but not in the way.

Why is Pippy AI Assistance needed:

Expanding the learning possibilities for Pippy users through the integration of an AI
assistant stems from the recognition of the diverse learning styles and needs of
learners, especially beginners. While Pippy provides a solid foundation for learning
Python programming within the context of Sugar Labs, the addition of an AI assistant
introduces a dynamic and interactive element that complements traditional learning
methods.

The AI assistant serves as a personalized guide for learners, offering contextualized
support and guidance tailored to individual learning trajectories. By enabling learners to
interact with the AI through natural language queries, they can receive instant feedback,
clarification, and code suggestions, fostering a more immersive and engaging learning
experience.

Moreover, the AI assistant augments the existing resources within Pippy by providing a
broader range of examples and explanations beyond the scope of traditional activity
development. This expansion of resources empowers learners to explore Python
programming concepts in greater depth and complexity, facilitating a deeper
understanding of core concepts and principles.

Additionally, the AI assistant mitigates the risk of learners getting stuck or discouraged
when encountering challenges or complexities in their coding journey. By offering timely
assistance and suggestions, the AI helps learners overcome obstacles more effectively,
promoting a sense of accomplishment and progress.

Overall, the integration of an AI assistant into Pippy enhances the learning possibilities
by providing personalized support, expanding resources, and mitigating barriers to
learning, thereby empowering learners to grasp concepts faster and navigate the Python
programming landscape with confidence and ease.



Architectural Flow:

1. The user interacts with the Pippy Activity interface.
2. The user requests assistance from the AI assistant through a designated UI
component or natural language input.
3. Pippy Activity sends the user's request to the AI assistant module.
4. The AI assistant module processes the user's request using natural language
processing (NLP) techniques.
5. The AI assistant module retrieves relevant Python code examples, explanations, or
suggestions based on the user's request and the context of their current activity.
6. The AI assistant module sends the generated response back to the Pippy Activity.
7. Pippy Activity displays the AI assistant's response to the user, either as text or within
the Pippy interface.
8. User interacts with the provided assistance, potentially incorporating it into their
coding activities or asking follow-up questions.
9. The cycle repeats as the user continues to interact with the Pippy Activity and
requests assistance from the AI assistant as needed.

Downsides to Using a Co-pilot-like Interface:

While an AI co-pilot interface can offer valuable assistance to learners, there are
potential downsides that should be considered:

● Dependency on AI: Relying too heavily on an AI co-pilot may hinder learners from
developing critical thinking and problem-solving skills. Learners may become
dependent on AI for generating code solutions rather than learning to solve
problems independently.

● Overreliance on Suggestions: Learners may be tempted to blindly accept code
suggestions from the AI without fully understanding the underlying concepts.
This could lead to superficial learning and a lack of deeper comprehension of
programming principles.

● Limitation of Creativity: A co-pilot-like interface may limit learners' creativity and
exploration. Instead of experimenting with different approaches and solutions,
learners may stick to the suggestions provided by the AI, thereby stifling
innovation and originality.

● Privacy and Security Concerns: Introducing an AI co-pilot raises potential privacy
and security concerns, particularly if the assistant interacts with sensitive data or
requires access to user information. Ensuring the privacy and security of user
data should be a priority when implementing such a feature.



Language Model Recommendation and Cost Consideration:

In selecting the Language Model (LLM) for the AI assistant in Pippy, it's essential to
prioritize open models that align with Sugar Labs' ethos as a FOSS (Free and Open
Source Software) organization. Considering the financial constraints of our target users,
especially children without a budget for AI, cost-effective solutions are paramount.
Therefore, I recommend exploring open-source LLMs that offer robust capabilities
without incurring significant expenses.

Recommended Open Models:

1. OpenAI's GPT (Generative Pre-trained Transformer) series:
● GPT-2 and GPT-3: While the full versions of GPT-2 and GPT-3 are

proprietary, OpenAI has released smaller, open-source versions that can
still provide valuable language generation capabilities.

● Potential Cost: Since OpenAI offers smaller versions of GPT-2 and GPT-3
for free, utilizing these versions could minimize costs associated with AI
implementation.

2. Hugging Face's Transformers Library:
● This library provides access to various pre-trained models, including GPT

variants, BERT, and more, fostering flexibility and customization in model
selection.

● Potential Cost: Hugging Face's library is open-source and free to use,
aligning with the FOSS principles of Sugar Labs.

3. Google's BERT (Bidirectional Encoder Representations from Transformers):
● Although developed by Google, BERT has been widely adopted in the

open-source community and can serve as a powerful tool for natural
language understanding tasks.

● Potential Cost: While Google's pre-trained BERT models are freely
available, there might be costs associated with utilizing Google Cloud
services for training or fine-tuning custom models. However, pre-trained
models can be leveraged without incurring additional expenses.

By leveraging these open models, we can ensure accessibility and affordability while
providing a high-quality AI assistant experience within Pippy. Additionally, the utilization
of open-source frameworks and tools will enable seamless integration with Sugar Labs'
existing infrastructure, fostering collaboration and innovation within the community.



Timeline:

Week 1-2: Exploration and Planning

● Dive deep into the existing codebase of the Pippy Activity, understanding its
architecture, and how components interact.

● Initiate discussions with mentors to define specific objectives and milestones for
the project.

● Outline a detailed plan for integrating the AI assistant into the Pippy Activity,
considering both technical requirements and user experience enhancements.

● Set up the development environment, ensuring all necessary tools and
dependencies are in place.

Week 3-4: Initial Implementation

● Begin implementing basic functionalities of the AI assistant within the Pippy
Activity framework.

● Design a user-friendly interface for interacting with the AI assistant, ensuring
seamless integration with the existing Pippy interface.

● Conduct initial rounds of testing to identify and address any technical challenges
or compatibility issues.

● Regularly communicate progress with mentors, seeking feedback and guidance
as needed.

Week 5-6: Functional Enhancement

● Enhance the capabilities of the AI assistant by integrating natural language
processing (NLP) capabilities, enabling it to interpret and respond to user queries
more effectively.

● Implement features such as code suggestion and error correction to assist
learners in navigating Python programming concepts.

● Conduct usability testing sessions with target users to gather feedback on the AI
assistant's functionality and user interface.

● Refine the design and functionality based on user feedback, prioritizing
improvements that enhance the learning experience.

Week 7-8: Integration and Optimization



● Integrate the AI assistant seamlessly into the Pippy Activity workflow, ensuring it
complements existing features without causing disruption.

● Optimize the performance of the AI assistant, addressing any bottlenecks or
inefficiencies in its implementation.

● Conduct comprehensive testing across different environments and platforms to
ensure compatibility and reliability.

● Document the integration process and provide clear instructions for users on
how to utilize the AI assistant within Pippy.

Week 9-10: Advanced Features and Testing

● Implement advanced features of the AI assistant, such as providing relevant
Python code examples based on user queries.

● Conduct thorough testing and debugging to identify and resolve any remaining
issues or bugs.

● Perform stress testing to assess the scalability and robustness of the AI
assistant under various conditions.

● Prepare for the first evaluation by summarizing progress, achievements, and
challenges encountered during the first phase of the project.

Week 11-12: Finalization and Documentation

● Finalize all components of the AI assistant, ensuring it meets all specified
requirements and objectives.

● Create comprehensive documentation and tutorials for users, covering
installation, usage, and troubleshooting of the AI assistant within Pippy.

● Prepare a detailed report highlighting key accomplishments, technical insights,
and lessons learned during the development process.

● Conduct a review of the project with mentors, soliciting feedback and addressing
any remaining issues or concerns.

Week 13-14: Review and Refinement

● Review the project's progress and performance against initial goals and
milestones.

● Address any feedback or suggestions provided by mentors and community
members, making necessary refinements or adjustments.

● Conduct final rounds of testing to ensure the stability and reliability of the AI
assistant in real-world usage scenarios.



● Prepare for the second evaluation by documenting progress and achievements
made during the second phase of the project.

Week 15-16: Finalization and Post-GSOC Planning

● Finalize all deliverables and documentation required for the final evaluation.
● Conduct a comprehensive review of the project to ensure completeness and

readiness for submission.
● Discuss post-GSOC plans with mentors and community members, outlining

intentions for continued contribution and support to Sugar Labs.
● Prepare a roadmap for future development and improvement of the AI assistant,

identifying potential areas for further enhancement and collaboration.

Hours per Week: I dedicate approximately 25-28 hours per week to this project.

Progress Reporting:

I will maintain regular communication with my mentors through weekly progress
reports, detailing the tasks completed, challenges faced, and plans for the upcoming
week. Additionally, I will utilize project management tools such as GitHub to track
progress and share code updates with my mentors for feedback.

Post GSoC Plans:

After GSOC ends, I am committed to continuing my contributions to Sugar Labs. I will
actively engage with the community, address any ongoing issues or feature requests
related to the AI assistant in Pippy, and explore opportunities for further enhancements
and collaborations within Sugar Labs.


