Title: Add an Al chatbot to the Chat Activity

OUTLINE
- About Me
- Technical Statement
- Expectation
- Technical Problem
- Architectural Flow
- Further Enhancement
- TimeLine
- Conclusion

About Me

Full Name: Jonathan Atiene

Email and GitHub Username: bemijonathan@gmail.com
Your first language: English

Location and Timezone: England

Intro: | am a seasoned software engineer with over 5 years of experience, making products. |
am currently an Msc Student studying Atrtificial Intelligence at De Montfort university, my last role
was a software engineering role at coderabbit, this team uses LLMs to review code on github,
gitlab and even collect context information from jira or other issue tracking software based on
the comments on the PR, we also had a chatbot experience where the review bot responds to
messages from users with in the context of the Pull Request. My experience there has mostly
enriched me with knowledge on how to handle LLMs api integrations in a cost effective
approach and handling common but tricky road blocks such as rate limiting prompt versioning
and ai agent set up e.t.c.

I have not had a previous contribution to sugar labs but | hope my previous experience and
expertise with LLM integrations have been able to convince you that | can be the best man for
this job, here are some of my open source code base where i did a bit of prompt engineering
code-critique-ai and woot

Technical Statement : Add an Al chatbot to the Chat Activity

Description

The Chat Activity is an interactive chat program. The goal of this project is to add a chatbot that
can be engaged as part of the conversation. The chatbot must be tuned to match the age of our
learners, which skews younger than the typical chatbots, so some tuning may be necessary.

Project Length: 175 hours

http://coderabbit.ai
https://github.com/bemijonathan/code-critique-ai
https://github.com/bemijonathan/Woot

Expectations:
- Create a chatbot program that can participate in conversations.
- Age Prompt tuning that customizes the chatbot to align with the interests and language
level of younger learners.
- Safe Interaction the prompts should ensure that the chatbots are safe, respectful and
appropriate for the audience.

Deliverables

- Integrate the Chatbot into the existing chat codebase

- Customize the chat for younger ones: Here we will introduce multiple bots for each of the
age range that will be determined by a simple fuzzy logic for determining the age range
of the greater number of participants in call.

- Ensure safe and appropriate interactions

- Balance discussion with Educational value

- Improve user interface.

- Optimize for performance

- Ensure security.

- Technology Stack
- LLM model (gemini ai, Claude, Open ai)
- Vector Database (pine cone, postgres)
- Rate Limiters
- Transformers for fine tuning
- Python

Architectural Flow

User Sends Request

User Interaction

Receives Reply

Select Appropriate Agent

Chatbot Receives Request Pass Through Rate Limiter)

Chatbot Integration Flow

Chatbot Processing Embed User's Information]

Retrieve Relevant Messages)

Formulate Reply

Send Reply to Conversation]

Data Management)—(Store Interaction in Vector Database)

Further Enhancement

Advanced Chatbot Capabilities
- Implement machine learning to adapt to user behavior and preferences.
- Multilingual Support

User Experience Improvements Add voice recognition and speech-to-text capabilities. Safety
and Moderation User Reporting System

Performance Optimization - Scalability Enhancements, Optimize the backend for handling a
higher number of simultaneous users efficient caching mechanisms Optimize API calls and
database queries.

Chatbot Interaction Analytics Develop a dashboard to monitor chatbot interactions and user
engagement.

Timeline:

Week 1: Initialization and Planning

Get familiar with the existing Chat codebase.

Set up the development environment and tools.

Fix pending issues to gain more familiarity with the codebase.
Understand the entire architecture as regards to sugar labs.
Finalize project plan and milestones.

Weeks 2-3: Basic Chatbot Integration and Queue Setup

Add Tests to the codebase.

Create the core chat bot, and the

Implement a message queue system to handle incoming requests efficiently.
Develop the agent selection mechanism.

Weeks 4-5: Rate Limiter and User Information Embedding
Integrate a rate limiter to manage request load and prevent overloading.
Implement user information embedding in the chat flow for personalized interactions.

Weeks 6-7: Database Integration

Store chat interactions in the vector database, ensuring data is queued and processed efficiently
and orderly, context awareness and prompt optimizations.

Develop the system for retrieving messages from the queue.

Implement response formulation based on the retrieved messages.

Weeks 8: Testing Optimization & Documentation
Perform comprehensive testing, including stress tests focusing on queue management.

Document the development process, particularly the queue system implementation and vector
databases.

