
 GSOC’ 23 PROJECT PROPOSAL

 Sugarizer Vue.JS Core

 Basic Details

 Fullname: Vinayak Nayar

 Email and Github Username: nayarvinayak03@gmail.com and vinayaknayar

 First Language: Hindi

 Location and Timezone: Uttar Pradesh, India(UTC +5:30)

 Share links, if any, of your work on previous open-source projects.
 Here are some links to my previous contributions.
 Improving documentation for a tool named Ugit(undo git commands).
 Fixed a minor bug in amibot(a WhatsApp bot for amity university students)

 Besides that, I have been working on the development of an Open source project - Mesazh
 (A chat application)

mailto:nayarvinayak03@gmail.com
https://github.com/vinayaknayar/
https://github.com/Bhupesh-V/ugit
https://github.com/asetalias/amibot/pull/8
https://github.com/orgs/mesazh/repositories
https://github.com/orgs/mesazh/repositories

 Convince us that you’ll be a good fit for this project, by sharing links to your
 contribution to Sugar Labs.

 During my internship at Essentia Softserv , I gained valuable experience in Vue.js and
 developed UI components for various sections of a website. I also conducted unit testing
 of components using Jest, which helped me refine my skills in front-end development and
 testing.
 In addition to my technical expertise, I pride myself on being reliable, responsible, and
 communicative. These qualities enable me to work effectively as part of a team and to
 take ownership of my responsibilities. As a result, I believe I would be a great fit for any
 open-source project.
 Recently, I have been exploring the Sugarizer app and have worked on integrating the
 Sugarizer Server API as a demo. This experience has given me a deeper understanding of
 the project's objectives and technical requirements. As someone passionate about
 open-source software and its potential to benefit society, I am eager to make meaningful
 contributions to the Sugar Labs community.
 I am particularly excited about the opportunity to contribute to the Sugarizer app and
 collaborate with other members of the community. With my experience in Vue.js, UI
 development, and unit testing, as well as my personal qualities of reliability, responsibility,
 and communication, I am confident that I can make valuable contributions to the project. I
 look forward to exploring potential opportunities to contribute and learn from other
 community members.

 Proof of work:
 Vanilla Javascript activity tutorial -> Link
 VueJS activity tutorial -> Link
 PRs Sugarizer App -> Link
 PRs Exerciser Activity -> Link
 Demonstration of integration of Sugarizer Server API -> Video Link Domain Link

https://essentia.dev/
https://discord.com/channels/1078051575580336249/1078054265517506681/1080361213915054150
https://discord.com/channels/1078051575580336249/1078054265517506681/1087496029282258946
https://github.com/llaske/sugarizer/pulls?q=is%3Apr+author%3Avinayaknayar+
https://github.com/llaske/ExerciserReact/pulls?q=is%3Apr+author%3Avinayaknayar+
https://discord.com/channels/1078051575580336249/1078054265517506681/1091820896735477770
https://sugarizer-demo.surge.sh/

 Project Details

 What are you making?

 This project aims to reimplement the Sugarizer Core UI by utilizing Sugarizer Vue.JS
 components. The current implementation of the Sugarizer Core UI relies on Enyo.JS, a
 deprecated web framework. Therefore, this project is necessary to update and improve the
 Sugarizer Core UI to ensure that it remains a modern and efficient tool.

 The link below is the flow chart that describes the project's architecture.
 (for better view) sugarizer-vuejs-core-ui.drawio.png

https://drive.google.com/file/d/1EazYBZsYsviJZI18j-AfqzGS5q50GJyQ/view?usp=sharing

 A detailed explanation of the components:

 Localization Component

 We will use i18Next to localize the sugarizer app, which will need us to create distinct
 JSON files for each language instead of the existing reliance on.ini files. In settings, the
 user should choose their favorite language (by default language being used in chrome
 should be used). Assuming we have the user's information saved on our server, we would
 retrieve their chosen language by sending an HTTP GET request to /api/v1/users/:uid.

 First Screen

 In order to move to the login and new user screens from the first screen, we don't need to
 perform any API calls, all we need is a straightforward user interface.

 The main feature, aside from that, is to display the navigation buttons based on the history
 of past logins on the screen after retrieving it from local storage.

 We also have a help button that the user may click to get more information on the first
 screen's components, I only want to use IntroJS for this (because we already are).

 Login Screen

 ● Login: The user will be directed to the login screen if they click the login icon on the
 first screen. Here, we will display the components that will ask for the server's
 information, the user’s name, and the password, respectively. Once we have this data,
 we will send an HTTP POST request to /api/auth/login to validate the user information
 and, if it is accurate, the user will be directed to the home view.

 ● Sign Up: The user will be directed to the new user sign-up screen if they click the new
 user icon on the first screen. Here, we will display the components that will ask for the
 server's information, the user's name, and the new password, respectively. Here, after
 receiving the user’s name we will make an HTTP POST request to /auth/signup with
 the parameter “beforeSIgnup: true” to check whether the name already exists in the
 server or not, if it does not exist we will move forward to the password field. Once we
 have this data, we will send an HTTP POST request to /auth/signup. This will create a
 new user in the server, and we'll use this information to make a POST request to
 /auth/login so that the user can log in and be taken to the app's home screen.

 ● UI aspect: The UI of the password field is unique and I would like to take reference from
 the existing codebase for that. The other components don’t have much complex UI and
 should be easier to implement.

 Home View

 For the home view, we need to render all the favorite activities of the user in a spiral
 manner, and for that, we need to make an HTTP GET request to the
 /api/v1/activities?favorite=true endpoint. We also have a settings and logout option there.
 Log out is simple to implement, by removing the user’s data from the local storage and
 navigating the user to the first screen should work for that. Besides that, when the user
 clicks on the settings option, the settings dialog box should be displayed.

 Navbar

 Navbar is the common part in the Home and List View. It has a few things to keep in mind.
 It has a search bar; buttons for home view, list view, and neighborhood view; a help button,
 and a cloud-like element to display if the user is connected to the server or not.
 However, for the scope of this project, the most crucial elements of the Navbar are the
 buttons for the home view and list view. These buttons act as triggers that allow users to
 switch between the different views of the app.

 List View

 When the user clicks on the "List View" button in the Navbar, we can retrieve all available
 activities in alphabetical order by sending an HTTP GET request to the "/api/v1/activities"
 endpoint. This will allow us to display the activities in an organized manner.
 In addition, we want to provide the option for the user to mark/unmark an activity as a
 favorite. To accomplish this, we need to send an HTTP PUT request to the
 "/api/v1/users/:uid" endpoint. This will update the user's favorite activities list accordingly.
 Along with the favorite option, we can also retrieve other useful information for each
 activity, such as its name, icon path, and version information. We can get this information
 from the same GET request to the "/api/v1/activities" endpoint.

 Settings

 The settings screen consists of the search bar and six other components. About me, about
 my computer, about my server, my security, my privacy, and language.
 HTTP Requests we will need are as follows.
 ● PUT /api/v1/users/:uid - To edit the user’s name, password, preferred language, and

 privacy options - server statistics, and synchronization of the journal.

 ● POST /auth/signup - If the user isn’t connected to the server we will need to create a
 new account for the user.

 ● GET /api/v1/users/:id - To retrieve the information of the user if the user is connected
 to the server.

 ● DELETE /api/v1/users/:id - If the user chooses to delete the account from the
 server(option available in my privacy tab).

 How will it impact Sugar Labs?

 In this project, we will be enhancing the Sugarizer Core UI by implementing it using the
 Vue.js framework, known for its high speed, efficiency, and superior performance. By
 leveraging Vue.js, Sugarizer can become a more efficient and maintainable application.

 What technologies will you be using?

 Sugarizer Vue.JS Components

 To achieve the aim of this project, we will need to use Sugarizer Vue.JS components,
 which are already being used in some of the activities.

 Require.JS

 To import/load javascript files and modules.

 Vue test utils with Jest

 For unit testing of our Vue components.

 Axios

 For making HTTP requests to the sugarizer server.

 i18Next

 An internationalization framework that we will use for the translation of the content in
 different languages.

 IntroJS

 For making progressive help/ tutorial components.

 Timeline

 May 4 - 28 (Community bonding period)

 ● Completing the required setup for the project
 ● Discussing the overall workflow of the project with my mentor
 ● Understand the current architecture of sugarizer in-depth and I will contribute to the

 existing sugarizer repo achieving the same.

 Note: Might be off-grid during this period due to my end-semester exams.

 May 29 - June 4 (Week 1)

 ● Adding localization compatibility using i18Next.
 ● Reimplementing the required features of the current lib/sugar-web directory.
 ● Unit testing(I want to follow test driven development process)

 June 5 - June 11 (Week 2)

 ● Development of UI of the first screen. (New user, Login, Help, Previous Logins)
 ● Unit testing

 June 12 - June 25 (Week 3 & Week 4)

 ● Development of the Login Screen (the password screen, new user screen, and login
 screen).

 ● Unit testing.

 June 26 - July 2 (Week 5)

 ● Development of Home View.
 ● Unit Testing

 July 3 - July 9 (Week 6)

 ● Fixing the patches (if they exist).
 ● Sugarizing the UI (if needed).

 Note: By Sugarizing I mean to make the UI more approachable for children (for eg, using
 less text) and making it up to the mark of the current sugarizer UI.

 July 10 - July 14 (Mid-term evaluation)

 Goals for mid-term evaluation
 Majorly, Localization of the app should be implemented. The first Screen, Login screen
 and Home View should work perfectly with most of the functionalities.

 July 14 - July 23 (~ Week 8)

 ● Navbar UI.
 ● Development of List View.
 ● Unit Testing.

 July 24 - August 6 (Week 9 & Week 10)

 ● Implementation of the settings screen.
 ● Unit Testing.

 August 7 - August 13 (Week 11 & Week 13)

 ● Unit testing of the components left.
 ● Buffer Period.

 August 14 - August 20 (Week 14)

 ● Fixing the patches (if they exist).
 ● Sugarizing the UI (if needed).

 August 21 - August 27 (Final Week)

 ● Finishing/ Final touch to the project.

 August 28 - September 4 (Final Evaluation)

 Goals for final evaluation
 Completion of all five screens (first screen, login, home view, list view, and settings screen),
 implementation of other important features of sugarizer like localization and unit testing
 coverage of the components.

 How many hours do you plan to spend each week on your project?
 I plan to spend 24-30 hours a week. I don’t have any other commitments during the
 summer besides my university class may resume after July 15.

 How will you report progress between evaluations?
 I would like to provide weekly progress reports and would appreciate it if you could
 suggest a suitable platform or method for me to share them with you regularly.

 Post GSoC plans?
 As someone new to Sugar Labs, I find the fact that it is a free/libre open-source
 organization whose main aim is to make the learning process for students easy and
 enjoyable to be a bit intimidating. However, I am eager to become an active contributor and
 to learn as much as possible during my journey with the organization. I see myself
 eventually becoming a mentor for programs like GSoC, as I become more experienced and
 skilled in the Sugar Labs community. Even if I don't get selected for GSoC, I would like to be
 a contributor.

