
Google Summer of Code 2023

Sugarizer Word Puzzle and Chart activities

Dhruv Mishra

General Information

About Me
I am Dhruv Mishra, a 3rd-year undergraduate student pursuing Computer Science and
Engineering from the Indian Institute of Technology BHU Varanasi, India. I am a curious
student and am still exploring as much as possible. The field of web development has
intrigued me and I always try to implement my skills in solving real life issues and
always aim to work for the betterment of society. I have worked on various projects
ranging from personal projects to the development of E-CELL IIT BHU website.

I have a strong foundation in software engineering principles, and I enjoy exploring
new technologies and approaches to improve my skills. Apart from this, I enjoy reading
books (currently migrating from fiction to self-help) and I write poems in my native
language. As expressed above, I like to work for the betterment of society and what
can be more joyful than contributing to such a great organization, which strived for the
development of small children. Sugar Labs coordinates volunteers around the world
who are passionate about providing educational opportunities to children through the
Sugar Learning Platform. I believe that my skills and my passion for innovative

https://www.ecelliitbhu.com/

research make me a good fit for this project, and I am excited about the opportunity to
contribute to its success.

Contact Information
Full name - Dhruv Mishra
Email address - mishra.x.dhruv18@gmail.com
Phone number - +91 7217213319

Education
Institute - Indian Institute of Technology BHU Varanasi
Degree - B. Tech
Major - Computer Science and Engineering
Graduation year - 2024
Courses taken - Intelligent Computing, AI, Computer Graphics, IT,

Computer Vision, Computer Architecture, DBMS, OS, Software
engineering etc.

Current CGPA - 9.42/10

Other details
1. I had done my internship at CISCO Systems.
2. I am the tech team manager at E-CELL IIT BHU.
3. Worked with other top firms like BYjus as a freelancer.

Tech-stack and programming languages
C++, C, Python, JavaScript, MERN, VueJs, ChartJs, HTML, CSS, Django

Resume link : Resume@Dhruv_Mishra
Github link : DhruvMishra1826
LinkedIn : Dhruv Mishra

https://drive.google.com/file/d/1QrLYmgzUUbEgT1geThoRwMy83ITl1wzF/view?usp=share_link
https://github.com/DhruvMishra1826
https://www.linkedin.com/in/dhruv-mishra-5b7a611a8/

Languages i speak : English (Full proficiency) and Hindi (Mother tongue)
Location & time zone : Varanasi, India (UTC +5:30)

Project Details

Description :

The goal of this project is to develop new Sugarizer activities asked by teachers from

Sugarizer deployments.

Specifically, the goal of this project is to:

● Develop a new Chart activity
● Add a new template Word Puzzle for Exerciser activity

Task and details :

1. Word Puzzle template

The new template Word Puzzle in Exerciser activity will enable a teacher to
create word puzzles exercise by inputting custom words on the go during a
lesson and have the learners practice.

The new template will allow you to type words by text, images, sounds, speech
or videos. It should work with the mouse and on touch devices.

1.1 Scope :

The project will cover the following topics:

1.1.1 Implementation of word puzzle template.
1.1.2 Templates created will be visually appealing.

1.1.3 The question format given by the teacher can be text, image, sound or
videos.

1.1.4 Teacher would be able to test the assignment before assigning it to the
student.

1.1.5 The student will be able to drag over the puzzle and can select a word.
1.1.6 Other necessary amendments can also be done on recommendation of a

mentor.

1.2 What am I making ?

I will be implementing this puzzle activity with help of javascript, ReactJs,
VueJs, HTML, CSS. As the target of this project is to develop puzzle activities for
kids, my target will be to implement a user-friendly interface, which will have all
necessary features as stated above. This puzzle activity will be flexible to changes
that may be suggested by the project mentors.

Let me give, a brief description of the steps/checkpoints, which i will be following
in order to make this project a success :

Note : (All figures given below are implemented by me for providing mentors a
rough idea about work flow)

Activity Diagrams

(Teacher / Instructor view)

(Student view)

Step 1: Implementation of dashboard for the teacher to form questions

It is one of the most important components of this project, as the description and the
questions of the activity will be mentioned by the teacher in this section only. This
section basically consists of the question, description of activity, the image of activity,
questions to be asked and the correct answers to questions.

There will be few planned constraints, which are as follows:

a. Title of the activity should not be an empty / null string.

b. Exercise description cannot be empty.
c. Question string should not be empty.
d. Number of questions in the puzzle should be equal to the number of answers

provided.
e. There should be no empty answer block.

Key Objective : My key objective is not just the implementation of very fancy things,
rather it is the development, which follows the trends and the template / UI of sugar
labs. So, all my implementations are made keeping in mind the way templates are fixed
for other activities.

Dashboard implementation snippets / rough imagination:

File location : src/containers/builders/PuzzleForm

Initial header files :

import React, { Component } from "react";

import { connect } from "react-redux";

import { incrementExerciseCounter } from

"../../store/actions/increment_counter";

import { addNewExercise, editExercise } from

"../../store/actions/exercises";

import { FormattedMessage } from "react-intl";

import datastore from "lib/sugar-web/datastore";

import chooser from "lib/sugar-web/graphics/journalchooser";

import env from "lib/sugar-web/env";

import meSpeak from "mespeak";

import withMultimedia from "../../components/WithMultimedia";

import {

QuestionOptionsJSX,

QuestionJSX,

} from "../../components/MultimediaJSX";

import {

FINISH_EXERCISE,

QUESTION,

TITLE_OF_EXERCISE,

TEST_EXERCISE,

PUZZLE,

ADD_ANSWER,

DELETE_ANSWER,

DESCRIPTION_OF_EXERCISE

} from "../translation";

import { withRouter } from "react-router-dom";

import "../../css/PuzzleForm.css";

import { MULTIMEDIA, setDefaultMedia } from "../../utils";

a. Implementation of PuzzleForm class.

class PuzzleForm extends Component {

constructor(props) {

//Initial settings

super(props);

this.state = {

edit: false,

id: -1,

title: '',

description: '',

question: {

type: '',

data: ''

},

puzzleText:'',

answers:[''],

scores: [],

times: [],

isFormValid: false,

errors: {

question: false,

list: false,

title: false,

}

}

}

}

This part will be doing all initial initializations required for the form to have in order to
function.

b. Setting the title of the puzzle activity

handleChangeTitle = e => {

//Handling the event of change of title

let error = false;

if (e.target.value === '') {

error = true;

}

this.setState({

...this.state,

title: e.target.value,

errors: {

...this.state.errors,

title: error

}

}, () => {

this.validityCheck();

});

};

c. Setting the description of activity

handleChangeDescription = e => {

//Handling the event of change in description

let error = false;

if (e.target.value === '') {

error = true;

}

this.setState({

...this.state,

description: e.target.value,

errors: {

...this.state.errors,

description: error

}

}, () => {

this.validityCheck();

});

};

d. Setting up the medium of question

QuestionType = (TypeOfMedia) => {

//Selecting the media of questions

//Function is bit long, so i resisted to include it here

};

e. Assigning the question to the activity

handleChangeQues = e => {

//Handling questions

let error = false;

if (e.target.value === '') {

error = true;

}

this.setState({

...this.state,

errors: {

...this.state.errors,

question: error

},

question: {

...this.state.question,

data: e.target.value

}

}, () => {

this.validityCheck();

});

};

f. Setting up the questions asked in puzzle

handlePuzzleQuestions = e => {

//Adding the questions of puzzle(What to find in puzzle)

let error = false;

if (e.target.value === '') {

error = true;

}

this.setState({

...this.state,

errors: {

...this.state.errors,

cloze: error,

},

puzzleText: e.target.value,

}, () => {

this.validityCheck();

});

};

g. Add answer to the question in the puzzle

handleNewAns = () => {

//Adding new answer

const { answers } = this.state;

this.setState(

{ answers: [...answers, ''] },

() => {

this.validityCheck();

}

)};

h. Remove answers

In the above figure, you can see a “Delete Answer” button. What it will do is, it will
delete the answer to the question you want.

handleRemoveAns = () => {

//Removing the answer

if (answers.length > 1) {

answers.pop();

this.setState(

{ answers: answers },

() => {

this.validityCheck();

}

)

}

};

i. Change answer of a question in the puzzle

handleChangeAns = e => {

//Handling change in answer of any puzzle problem

const index = Number(e.target.name.split('-')[1]);

const ans = this.state.answers.map((ans, i) => (

i === index ? e.target.value : ans

));

let error = false;

if (e.target.value === '') {

error = true;

}

this.setState({

...this.state,

answers: ans,

errors: {

...this.state.errors,

answers: error

}

}, () => {

this.validityCheck();

});

};

j. Checking whether the puzzle is valid and is not violating the constraints.

validityCheck = () =>{

//Function to check validity of form filled by the teacher

//Again it contains a lot of checks and it's a bit long so,I

will not be including its snippets.

};

k. Testing of puzzle by teacher before assigning

Routing the button to File location : src/containers/Players/PuzzlePlayer

TestPuzzle = (e) => {

//To test the working of puzzle

//It will go to original location from where a student will

access it

};

l. Submission of puzzle

By clicking on the “Finish” button, this puzzle form will be submitted and will be
available on the main portal for students to solve.

submitPuzzle = (e) => {

//Handling final submission of puzzle

//Re-directing teacher to home page

};

m. Any other function can also be implemented as per the wish of the mentor.

Dashboard resembling figure 1

Dashboard resembling figure 2 / Example

Dashboard resembling figure 3 / Example

Dashboard resembling figure 4 / (How it looks on builder menu)

Step 2: Implementation of student side view of activity

This is what will be visible to the students. This section basically consists of the puzzle
grid, Instruction pop-up, the questions list, and the answered questions will be
replaced by the correct answers if you have found it

There will be few planned constraints, which are as follows:

a. Students are only allowed to drag the cursor either horizontally or
vertically, not diagonally.

b. If the student finds the word, then he/she has to drag over the complete
word in order to get that correct.

c. Selection of words will be only considered if the cursor is within the
boundaries of the puzzle.

Puzzle activity implementation snippets/rough imagination:

File location : src/containers/Players/PuzzlePlayer

a. Initializing a few containers that will be storing certain values in it.

var questionList = new Array(); //Contains questions

var AnsList = new Array(); //Contains answers

const [currScore,setScore] = useState(0); //Score tracker

const [grid,setGrid] = useState([]); //Initial grid

const [currWord,setCurrWord] = useState(''); //selected word

b. Implementation of grid

This function is intended to store the words used in the word search
puzzle. To determine the appropriate size of the array, the function
computes the longest word present in the input array and uses its length
as the width of the array, while the number of words in the input array
determines the height. The resulting empty grid array is then returned by
the function.

makeGrid = (AnsList) => {

//Implementation of the grid from the given answers list

// Pseudocode :

// Width of grid = longestWord + 2;

// Length of grid = longestWord + 2;

// Filling the answers list in grid;

// For remaining places, i will be randomly

// filled with english characters.

};

c. Showing initial setup of puzzle

This function manages the initial setup, a student will see as this puzzle
activity loads. This function basically keeps track of the initial puzzle

structure, which we will be getting from the “makeGrid()” function. It will
also ensure the necessary elements like title, hint box also pops up as
page load.

showInitial = () =>{

//Will be showing initial setup of puzzle

// Pseudocode:

// makeGrid(AnsList);

// Initial question list on right

//Initial designing components will also be called

};

d. Display grid

displayGrid = (grid) =>{

//displaying the grid formed on screen

};

e. Selection of a particular word in puzzle

Constraint : Selection word should either horizontal or vertical (not
diagonally) and should be in continuous manner and those be within the
boundaries of the grid.

selectWord = (grid) =>{

//defines selecting of word by dragging over the puzzle

// Implementing actions to take onMousedown() a

particular letter

};

f. Checking the correctness of marked word

Now the region whatever you dragged the cursor will be selected to form
a word. If that word is the answer to any question then that particular
region will be marked with a green color to state that the selected word is
the correct answer.

checkSelectedWord = (word) =>{

//Checking whether the selected word area is a valid

answer of any question or not

};

g. Correct answer changes in UI

This function basically defines changes that should take place once it is
noticed that you have selected the correct answer.

These changes in the UI can be very easily molded as per the
convenience and liking of the mentor.

correctAnswer = () =>{

//If selected word is an answer, do relevant changes

on UI of puzzle

};

In my case I think that, if a student finds the correct answer then the
question corresponding to that answer should be replaced with the
answer in the questions list. It looks better.

Note : These changes are temporary and can be changed as per the wish
of the mentor.

h. Calculating the score

scoreCalculator = () =>{

//Storing the current score

//Pseudocode :

// if word is correct then :

// currScore = currScore + 1

// setScore(currScore)

};

i. Remove the selected word

Now, it's highly possible word is not the answer to any of the questions.
So, we have to unmark the complete dragged part back to normal state,
and this should not affect other correctly marked answers.

removeSelectedWord = () =>{

//If selected word is not a valid answer, unmark that

region back to original

};

j. Updating question list present right of puzzle

In my case if a student finds the correct answer then the question
corresponding to that answer should be replaced with the answer in the
questions list. It looks better. (Figure above).

updateQuestionList = () =>{

//As shown in UI, there will be a question list on

right side of puzzle hence we will be updating it, if

correct answer is found

};

k. Submission of assignment

After completing the assignment, student can submit their test and
through “submitActivity()” function, i will be doing two things:

1. Checking the validity of form, means whether students validly
solved questions or not as directed in the instruction part.

2. Accept the form and route students to the result and evaluation
part.

submitActivity = () =>{

//Submit the assignment

// route to evaluation and result part.

};

l. Any other function can also be implemented as per the wish of the mentor.

Enhancement in puzzle activity :

(Case study)

There lived a boy Alice in Bordeaux, he belonged to an area where power
cuts were very common. Now, his online assignment is going on and he has
to solve the assignment by 4 PM. It’s 3:50 PM, and unfortunately, the power
went off. Now, surprisingly power came just 3 minutes before the deadline.
As he opened the portal for the test on his laptop, he saw that all the
answers he marked were now vanished. Now, he started crying. And this is
the end.

Problems : Assignment was not stored at a particular place. Other sugar assignments
save the progress of the student. So, I also want to implement that feature in this
activity,

1. Recording the Chart Activity in a journal :

The purpose of using a journal is to preserve the state of an activity, ensuring that
when the user reopens it, it resumes from the precise point at which the user left off.

Sugar-web facilitates the use of the journal by providing the sugar-journal
component, which must be included within the app element of the HTML file.

2. Save the context in the datastore :

The concept involves storing the current activity's context in the datastore
whenever we exit the activity. Sugar utilizes the Journal as its datastore, which
Sugar-Web initializes automatically during activity setup.

Here's how we can save the state of the activity: First, we create a context object
and include the required data, such as the chart data. Next, we provide this object
as an argument to the saveData() method of Sugar-Journal.

First, we will define the context object and add the charts to it, then pass this to the
saveData() method.

var context = {

currentGrid: this.currentGrid

};

this.$refs.SugarJournal.saveData(context);

methods: {

...

onStop: function () {

// Save current pawns in Journal on Stop

var context = {

currentGrid: this.currentGrid

};

this.$refs.SugarJournal.saveData(context);

}

}

This whole code should be called at the end of the activity. To do that we have to
catch the click on the Stop button of the activity. So let's create another method in
js/activity.js to call when stopping the activity.

Then add the event listener to the stop-button in index.html.

<sugar-toolitem id="stop-button" title="Stop" class="pull-right"

v-on:click="onStop"></sugar-toolitem>

Puzzle resembling figure 1

(Initial setup)

Puzzle resembling figure 2

(Selection of a correct word)

[Question will be replaced by correct answer]

Puzzle resembling figure 3

(Proposed UI of puzzle)

Evaluation Mode / rough imagination:

File location : src/store/actions and src/store/reducers

I will be using the standard way of evaluation of sugarLabs as it feels it's the
best in current setUp. Below are some of the instances of evaluation that I will
be implementing.

1. Question wise correctness check :

2. Total score analysis :

3. Time taken to solve :

Step 3: Connection of student side view with teacher’s dashboard.

1.3 What’s after this ?

I am open to new ideas and manipulations from your side and I assure
you, I will be trying my best to incorporate that.

2. Chart Activity

2.1 Scope :

The project will cover the following topics:

2.1.1 Implementation of chart activity.
2.1.2 Addition of few new features like sharing of activity and exporting

charts as images.
2.1.3 All necessary amendments asked by the mentor and sugar Labs

organization.

2.2 What am I making ?

I will be implementing this Charts activity with help of chartJs, javascript,
ReactJs, VueJs, HTML, CSS and any other existing library for chart activity can also
be used, i am flexible to use such libraries. As the target of this project is to
develop and modify existing chart activities for kids, my target will be to
implement a user-friendly interface, which will have all necessary features as
stated above. This chart activity will be flexible to changes that may be suggested
by the project mentors.

Let me give, a brief description of the steps/checkpoints will be following in order
to make this project a success :

Step 1: Implementation of chart activity having existing features

The chart activities will have following features:

a. One can create various types of graphs like Bar graph, horizontal bar graph, Line
graph and Pie chart.

b. One can add and remove entries from the graphs
c. One can change the colors and UI of graphs/charts by changing the settings.
d. One can access the puzzles both in normal mode and full screen mode.
e. The tutorial is also present.

Step 2: Additional features that we can add :

a. Sharing of chart activity can be implemented.
b. Change in labels and colors as per convenience of the user.
c. New chart activities like doughnut charts, area charts etc can also be

implemented.
d. Export charts as images.

Implementation / rough imagination:

3. Some Initializations

import React, { Component } from 'react';

import './App.css';

import Pie from './Pie'; //Pie chart implementation

import Line from './Linegraph'; //Line graph implementation

import Bar from './Bars'; //Bar graph implementation

import Hbar from './Hbars'; //Horizontal bar graph imp

import { useState } from 'react';

export default class App extends Component{

constructor(props) {

super(props);

this.state = {

showPie: false,

showLine: false,

showBar: false,

showHbar: false,

addNew:{value:'',num:0},

List: [{

value : "",

number : '',

}

]

};

this.handleClickPie = this.handleClickPie.bind(this);

this.handleClickLine = this.handleClickLine.bind(this);

this.handleClickBar = this.handleClickBar.bind(this);

this.handleClickHbar = this.handleClickHbar.bind(this);

}

}

4. Add data (+)

Users can utilize the "add" button to incorporate fresh labels and their
corresponding values, which will then be presented on the charts visible on the

screen. An event will activate the method upon the user's selection of the "+"

button. This method will obtain user input values, such as the label and data,
and subsequently append them to the chart data array. Following the addition
of data, the chart will undergo re-rendering to exhibit the updated chart, now
including the new data.

Working :

Initial list :

Intermediate step :

After addition :

add=()=>{

const { List } = this.state;

let val1 = document.getElementById('name').value;

let val2 = document.getElementById('number').value;

document.getElementById('name').value='';

document.getElementById('number').value='';

let obj = {value: val1, number: val2};

this.setState(

{ List: [...List, obj] },

() => {

});

let data = document.getElementById("tabledata");

let html = `<li class="table-row">

<div class="col col-1"

data-label="colour">${obj.value}</div>

<div class="col col-2"

data-label="share">${obj.number}</div>

`

data.innerHTML+=(html);

};

5. Remove data (-)

Users can make use of the "Remove Data" feature to eliminate data from the chart.
When the user clicks on the "-" button, an event will be triggered to activate the
method.

remove=()=>{

const { List } = this.state;

if (List.length > 1) {

List.pop();

this.setState(

{ List: List },

() => {

}

)}

// console.log(List);

this.handleClickBar()

}

Working :

Before deletion and after deletion :

6. Charts Implementation

4.1 Bar graph

4.1.1 Initializations and state definition

import React from 'react';

import { Chart, CategoryScale, LinearScale, BarElement } from

'chart.js'

import {Bar} from 'react-chartjs-2';

import './Bars.css'

Chart.register(CategoryScale, LinearScale, BarElement)

const state = {

labels: props.labels,

datasets: [

{

label: props.label;

backgroundColor: props.bgColor,

borderColor: props.borderColor,

borderWidth: props.bWidth,

data: props.data

}

]

}

4.1.2 Class “Bars” implementation

export default class Bars extends React.Component {

render() {

return (

<div className='Bars'>

<Bar

data={state}

options={{

title:{

display:true,

},

legend:{

display:true,

position:'right'

}

}}

/>

</div>

);

}

}

4.2 Line chart

4.2.1 Initializations and state definition

import React from 'react';

import {Line} from 'react-chartjs-2';

import { Chart, LineController, LineElement, PointElement,

LinearScale, Title,CategoryScale } from 'chart.js';

import './Linegraph.css';

Chart.register(LineController, LineElement, PointElement,

LinearScale, Title, CategoryScale);

Chart.register(CategoryScale);

const state = {

labels: props.labels,

datasets: [

{

label: props.label,

fill: props.fill,

lineTension: props.LineTension,

backgroundColor: props.bgColor,

borderColor: props.borderColor,

borderWidth: props.borderWidth,

data: props.data

}

]

}

4.2.2 Class “Linegraph” implementation

export default class Linegraph extends React.Component {

render() {

return (

<div className='line'>

<Line

data={state}

options={{

title:{

display:true,

},

legend:{

display:true,

position:'right'

}

}}

/>

</div>

);

}

}

4.3 Pie chart

4.3.1 Initializations and state definition

import React from 'react';

import {Pie} from 'react-chartjs-2';

import {ArcElement} from 'chart.js';

import { Chart, LineController, LineElement, PointElement,

LinearScale, Title,CategoryScale } from 'chart.js';

import './Pie.css';

Chart.register(LineController, LineElement, PointElement,

LinearScale, Title, CategoryScale);

Chart.register(ArcElement);

const state = {

labels: props.labels,

datasets: [

{

label: props.label,

backgroundColor: props.bgColor,

hoverBackgroundColor: props.hbgColor,

data: props.data

}

]

}

4.3.2 Class “Pies” implementation

export default class Pies extends React.Component {

render() {

return (

<div className='pie'>

<Pie

data={state}

options={{

title:{

display:true,

},

legend:{

display:true,

position:'right'

}

}}

/>

</div>

);

}

}

7. Chart setting

Within the chart activity, the "Chart Settings" function empowers users to
personalize their chart by modifying the labels of the horizontal and vertical axes.
This function carries significance since it enables users to label the axes correctly,
resulting in an accurate representation of their data.

Moreover, users can also alter the label color to highlight them or match a specific
theme. To execute this feature, Vue.js components will be utilized to ensure that it
remains change sensitive. By offering users the ability to customize their chart, they
will have greater command over how their data is presented, enabling them to
make informed decisions based on the insights they derive from the chart.

settings(){

//this function will act as a single window to all functions that

will be changing the charts

//Pseudocode :

// updateLabel()

// changeColors()

// changeChartName()

// updateChart()

// Any other variation wanted by mentor

};

8. Text formatting :

Within the chart activity, there are multiple tools available for users to format the
appearance of text.

These formatting options include altering the:

a. text's color,
b. size, and
c. font style

from a selection of predefined options in the application. To apply these formatting
changes to the text, users can conveniently select the desired formatting tool from
the toolbar provided

These features can be well implemented by using internal libraries of sugarizer like
sizePalette.js, ForegroundColourPalette.js, fontPalette.js & formatTextPalete.js.

textFormatter(){

//this function will be just used to enhance the UI and way of

representation of content, by enhancing the text fonts, text size

,text colors etc.

//Pseudocode :

// updateFont()

// changeTextsize()

// changeTextColor()

};

9. Export Chart :

Basically there are two ways in which we can export the charts. The first is to
“export chart as image” and “export chart as pdf”. Now, this can be achieved by
two different libraries, viz “jspdf” and “html2canvas”. Let’s discuss each part in a bit
of detail.

Export charts as pdf:

The act of exporting a chart as PDF is a very useful enhancement / feature. This
enables a user to take a current snap of your current chart work and save it as PDF
on your local devices. There are quite a few methods to implement this but the best
in my opinion is the application of the “jsPDF” library. jsPDF is a popular
open-source JavaScript library that allows you to generate PDF documents from
your HTML content using pure client-side JavaScript. It provides an easy-to-use API
that enables you to create PDF documents with text, images, graphics, and other
elements.

Implementation :

1. I will be implementing a “exportPDF()” function and the first step of it will be to
create a new instance of jsPDF.

var doc = new jsPDF();

2. Now, I will be using the “getElementById()” method, in order to get the HTML
element to be exported.

var region = document.getElementById("region-to-export");

3. Now, I will be using “html2canvas”, which will render the selected region as an
image.

html2canvas(element,{scale}).then(function(canvas) {

// Using html2canvas to render the region as an image

}

4. Using “html2canvas”, I will render the region as an image and then add the
image to PDF using “doc.addImage()”.

5. Finally, save the PDF using “doc.save()”.

html2canvas(element, {scale}).then(function(canvas) {

var imgData = canvas.toDataURL('img/png');

doc.addImage(img, 'PNG', 0, 0);

doc.save('exported-page.pdf');

});

Export charts as image:

Implementation :

1. First of all, I will be importing the “html2canvas” library.

import html2canvas from 'html2canvas';

2. Create a canvas element that will hold the chart that I want to export as an
image and create a button to fire the “exportChart()” function.

<canvas id="myChart"></canvas>

<button onclick="exportChart()">Export chart as image</button>

3. I will be rendering the chart on the canvas element.

var canvas = document.getElementById("myChart");

var ctx = canvas.getContext("2d");

4. I will write the “exportChart()” function. The chart will be exported as a PNG
file, when the user clicks the button.

function exportChart() {

var ele= html2canvas(document.getElementById("myChart"));

ele.then(function(canvas) {

document.createElement("a").download = "chart.png";

document.createElement("a").href =

canvas.toDataURL("image/png").replace("image/png",

"image/octet-stream");

document.createElement("a").click();

});

}

10. Share activity :

This part can be best implemented by taking into reference the tutorial provided by
sugarizer i.e: Handle multi-user with presence . Each and every small step is mentioned
in this blog.

To enable this feature, a pop-up kind of box can be implemented like cards and
palettes. To facilitate reuse, a data variable will be employed to reference the
component instance multiple times. Additionally, a mounted function will be included in
the Vue main application.

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step6.md

To incorporate presence into the network button, we will modify the sugar-toolitem for
the same. To begin with, we will handle the click on the share button by adding several
attributes such as palette-event="shared", v-if="SugarPresence", and
v-on:shared="SugarPresence.onShared".

data: {

SugarPresence: null,

...

},

mounted: function () {

this.SugarPresence = this.$refs.SugarPresence;

...

},

<sugar-toolitem

id="network-button"

title="Network"

palette-file="sugar-web/graphics/presencepalette"

palette-class="PresencePalette"

palette-event="shared"

v-on:shared="SugarPresence.onShared"

v-if="SugarPresence"

></sugar-toolitem>

When the user clicks the share button, it will activate the shared event specified by
"palette-event," resulting in the sharing of the activity, which can then be seen by
others in the neighborhood view. The component's "onShared()" method will take care
of this process.

onNetworkDataReceived(msg) {

// Handles the data-received event

},

onNetworkUserChanged(msg) {

// Handles the user-changed event

},

During a shared activity, when a user joins. To handle it, I will be using the events
provided by the sugar-presence component.

11. Instruction / activity tour / tutorial:

The working source for me for this part will be the amazing documentation named
Integrate a tutorial . I will be following this blog for implementation of this part.

To incorporate the tutorial tour into the activity, we will utilize the intro.js library in
conjunction with the sugar-tutorial component that is supplied by sugar-web. The
Intro.js is a compact JavaScript library that empowers us to generate compelling,
progressive customer onboarding tours.

onHelp: function () {

var steps = [

{

},

{

},

{

}

];

this.$refs.SugarTutorial.show(steps);

},

By utilizing the sugar-toolitem component, we will append a button and subsequently
allocate the v-on:click directive to it, which will activate an onHelp function.

Any change or suggestion made by a mentor can be easily accommodated.

12. Chart activity localization :

This will enable the activity to run in multiple languages. For this purpose we will
be using another sugar-web component named “sugarL110n”. We will update the

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step9.md

locale.ini file with translations of all the strings in multiple languages in order to
localize the activity.

Eg- Like this,

[*]

.

.

Hello=Hello {{name}}!

Played={{name}} played

AddPawn=Add pawn

[en]

.

.

Hello=Hello {{name}}!

Played={{name}} played

AddPawn=Add pawn

[fr]

.

.

Hello=Bonjour {{name}} !

Played={{name}} a joué

AddPawn=Ajouter pion

[es]

.

.

Hello=Hola {{name}} !

Played={{name}} jugó

AddPawn=Agrega un peón

13. Recording the Chart Activity in a journal :

The purpose of using a journal is to preserve the state of an activity, ensuring that
when the user reopens it, it resumes from the precise point at which the user left off.

Sugar-web facilitates the use of the journal by providing the sugar-journal component,
which must be included within the app element of the HTML file.

14. Save the context in the datastore :

The concept involves storing the current activity's context in the datastore
whenever we exit the activity. Sugar utilizes the Journal as its datastore, which
Sugar-Web initializes automatically during activity setup.

Here's how we can save the state of the activity: First, we create a context object
and include the required data, such as the chart data. Next, we provide this object
as an argument to the saveData() method of Sugar-Journal.

First, we will define the context object and add the charts to it, then pass this to the
saveData() method.

var context = {

barChart: this.barChart

};

this.$refs.SugarJournal.saveData(context);

methods: {

...

onStop: function () {

// Save current pawns in Journal on Stop

var context = {

barChart: this.barChart

};

this.$refs.SugarJournal.saveData(context);

}

}

This whole code should be called at the end of the activity. To do that we have to
catch the click on the Stop button of the activity. So let's create another method in
js/activity.js to call when stopping the activity.

Then add the event listener to the stop-button in index.html.

<sugar-toolitem id="stop-button" title="Stop" class="pull-right"

v-on:click="onStop"></sugar-toolitem>

15. Stop / Full screen button :

File location : src/components/FullScreenAndTutorial.js

Implementation of class :

class FullScreenAndTutorial extends Component {

constructor(props) {

super(props);

this.state = {

isfullScreen: false,

showTutorial: false,

}

}

}

Implementation of Functions :

startTutorial = () => { //Tutorial initiated

this.setState({

showTutorial: true,

});

};

//Toggling through various cases

stopTutorial = () => { //Tutorial terminated

this.setState({

showTutorial: false,

});

};

goFullscreen = () => { //Full screen initialized

this.setState({

isfullScreen: true,

});

};

gounFullScreen = () => { //Full screen terminated

this.setState({

isfullScreen: false,

});

};

Implementation of react fragment (subject to variation based on
className and id namings) :

<React.Fragment>

<MainToolbar

{...this.props}

{...navFunctions}

showTutorial={this.state.showTutorial}

shared_exercises={this.props.shared_exercises}

evaluationMode={this.props.evaluationMode}

/>

<button

className={"toolbutton" + (!this.props.inFullscreenMode ?

" toolbar-hide" : "")}

id='unfullscreen-button'

title={unFullScreen}

onClick={this.props.toggleFullscreen}

/>

</React.Fragment>

Open source experience and contributions

I got introduced to open-source projects and community in the second year of my undergraduate
studies. Since my first year, I kept myself involved in developing and learning about software and
technologies. I have been contributing to Sugar Labs for the past few months. During this time, I
have contributed to various repositories of sugar labs like ExerciserReact , sugarizer and music
blocks and fixed documentation, bugs, UI changes, enhancements etc.

These past two months have been a great learning experience. I also created a few genuine
issues and some of them were considered by mentors and were fixed by me.

These are my contributions to Sugar Labs:

Pull request / Issues links Description Status

#3228 Fixes in the sugarizer Palette
box’s search bar (PR)

Merged

#172 Drag box fixes (PR) Merged

#1347 Description box overflowing
issue (PR)

Open

#161 Title bar lacks favicon (Issue) closed

#162 Exerciser landing page UI
(Issue)

closed

#165 MCQ Quiz question
alignment (Issue)

Open

https://github.com/sugarlabs/musicblocks/pull/3228
https://github.com/llaske/ExerciserReact/pull/172
https://github.com/llaske/sugarizer/pull/1347
https://github.com/llaske/ExerciserReact/issues/161
https://github.com/llaske/ExerciserReact/issues/162
https://github.com/llaske/ExerciserReact/issues/165

and many other issues ……
I am actively contributing to other github repositories also for the sake of overall development of
the open source community. I am also a competitive programmer active on codeforces, codechef
and atcoder and this too enhances my development skills as I not only aim to fix bugs or suggest
solutions rather I aim to lay down a more optimized and efficient approach to solve them.

Projects / research works :

a. WaDS: IP Watermarking Using Dated Handwritten Signature
I am the co-author of this research paper.

This paper presents a novel dated handwritten signature based IP watermarking
technique to secure the IP cores against piracy, counterfeiting and false claim of IP
ownership threats. The results reveal that the proposed scheme outperforms the
related approaches without incurring considerable design cost overhead.
Status : Finished (To be published by Elsevier)

b. A decentralized approach to criticality and energy aware fog computing for remote health
monitoring.
I am the author of this paper.

This paper basically deals with the computation of severity of the patient on the basis
of data collected by various sensors on a local device like mobile and IOT devices. As
the computation power of local devices are limited, hence for fast and latency free
computation of severity of patients, we will be doing a medical offloading to fog servers
which have higher computation power and allocation will be based on decentralized
SAP based approach. Our main objective is to maximize the utility function which
increases with decrease in patient cost and increases with increase in revenue to
hospital.
Status : Finished (Yet to be published)

c. A machine learning approach to matching graphs of audio and graphs of visuals of a
news video, so that it can be checked whether what a reporter is speaking and what
visuals the audience are viewing are congruent or not.
Status : Finished

Timeline and Deliverables

TIMELINE DELIVERABLES

Week 1
-May 29, 2023 Jun 4, 2023

Basic planning of files and folder
structure

Week 2
-Jun 5, 2023 Jun 11, 2023

Creation of dashboard for teachers

Week 3
-Jun 12, 2023 Jun 18, 2023

Puzzle UI creation and functions
implementation

Week 4
-Jun 19, 2023 Jun 25, 2023

Puzzle functions implementation

Week 5
-Jun 26, 2023 Jul 2, 2023

Linking the puzzle UI with
dashboard and necessary

amendments

Week 6
-Jul 3, 2023 Jul 9, 2023

Necessary amendments and
enhancements

Week 7
-Jul 10, 2023 Jul 16, 2023

Chart activity implementation - 1

Week 8
-Jul 17, 2023 Jul 23, 2023

Chart activity implementation - 2

Week 9
-Jul 24, 2023 Jul 30, 2023

features addition - 1

Week 10
-Jul 31, 2023 Aug 6, 2023

features addition - 2

Week 11
-Aug 7, 2023 Aug 13, 2023

Amendments

Week 12
-Aug 14, 2023 Aug 20, 2023

Buffer

Week 13
-Aug 21, 2023 Aug 27, 2023

Buffer

General Questions

1. Tutorial links:
Sugarizer Vanilla Javascript activity development tutorial
Sugarizer Vue.js activity development tutorial

Video link : Tutorial Video

2. How many hours will you spend each week on your project?
Starting from May 16th until July 18th, I will be on summer break from college.
During this period, I will be available for approximately 48-50 hours per week,
and once college resumes, I can devote about 40-45 hours per week. With no
other obligations during my summer break, I am able to dedicate the majority of
my time to GSoC.

3. How will you report progress between evaluations?
My activity on GitHub will be consistent as I plan to regularly submit pull
requests to Sugarizer and engage with my mentors, providing visibility of my
progress to anyone in the organization. This ensures that my advancements are
well-documented on GitHub. Additionally, I intend to create weekly or bi-weekly
blog posts to share updates on my progress, challenges encountered, and their
corresponding solutions.

4. How will it impact Sugar Labs?
Both the activities which we are trying to accomplish in this complete project
will enhance the learning experience of students. It’s well known that the

https://github.com/DhruvMishra1826/VanillaJs_pawn_activity
https://github.com/DhruvMishra1826/VueJs_Pawn_Activity
https://drive.google.com/file/d/1GGp5BZSTKCMD4fiGp9Ro8vQf9EMFkU5H/view?usp=sharing

efficiency of learning increases when we learn in a fun manner and what can be
more joyful than solving a puzzle from the topic you learned. The chart activity
will make students understand and visualize the statistics and make them
visualize data in a better manner. Overall we can conclude that it's highly fruitful
to have both the features in Sugarizer.

5. Discuss your post-GSoC plans. Will you continue contributing to Sugar Labs
after GSOC ends?
As I discussed in the introduction part only, I like to work for noble causes. The vision
with which sugar Labs is working, highly attracts me to work for it even during GSOC
and after it. The satisfaction which I get after solving such issues provides me immense
satisfaction and motivates me to work better in the next go. As, to conclude my answer
is a big “YES”.

6. Why should you select me for this project ?
A simple and crisp answer to this question, I am very confident about this project and
the work which I have to do in this project. For 1 month I have been scanning the
complete codebase of sugarizer and music blocks. I feel I have required necessary skills
and will be a highly fit person for this project. I have also tried to implement the things
which are to be implemented during GSOC (screenshots provided). I hope you will
surely provide me with a chance to prove it.

I am looking forward to contributing to Sugar Labs this summer season.
Kind Regards.

