Music Blocks 4 Project Builder
Integration

Basic Details

Name: Husain Shahid Rao

Email: husainshahidrao@gmail.com
Github: https://github.com/husain3012
Language: English, Hindi

Location: India, (IST, GMT+5:30)

https://www.husainshahidrao.com/

Open Source Contributions
¢ Sugarlab - MusicBlocks

o https://github.com/sugarlabs/musicblocks/pull/3203

o https://github.com/sugarlabs/musicblocks-v4-builder-framework/pull/5

¢ Other Contributions and work:

o https://github.com/husain3012/automatasim

o https://github.com/Greenstand/treetracker-admin-client/pull/246

Project Details

Music Blocks 4 Project Builder Integration

Building project builder as a wrapper component from the prototype, and adding
functionality to access musicblocks-v4-lib APIs.

It would provide sugar labs with an all-new musisblock-v4, which will be much smoother
and more robust than its predecessor.

Music Blocks 4 Project Builder Integration

https://www.husainshahidrao.com/
https://github.com/sugarlabs/musicblocks/pull/3203
https://github.com/sugarlabs/musicblocks-v4-builder-framework/pull/5
https://github.com/husain3012/automatasim
https://github.com/Greenstand/treetracker-admin-client/pull/246

General Objectives:

Refactor the prototype code
Integrate it in musichlocks-v4
Create a wrapper component Project Builder (builder) in nusichblocks-va

Add utilities to the wrapper component so that the Project Builder component can
communicate with the Specification and Syntax Tree APIs of the Programming_
Framework

Create a Palette (palette) component

Proposed Solution

Refactoring the prototype

Improving design of blocks, take inspiration from MIT’s Scratch

o Material design and colors for various blocks
o Highlighting drop-zones

o Canvas with scrollable view and zoom in/out controls, etc.

e Making project suitable for to be used as a sub-module

Remove boilerplate code for the standalone project builder application, and add
necessary exports. These exports will include the wrapper component for the builder

Music Blocks 4 Project Builder Integration

https://github.com/sugarlabs/musicblocks-v4-lib
http://scratch.mit.edu/

and other functions to tap into the state management of the builder.

¢ Proposed directory structure:

— package.json
F— public

— README.md

— src

— app

— archive
— common

— components

— core
— modules

L— project-builder

I— README . md
L— srec

!

!

!

| — BlockWorkspace.tsx
| — components

| F— index.ts

| — package.json

|

|— @types
L— utils

L— @types

— tools

Creating a wrapper component

+ Handling app (project-builder) state via redux or context api:

o Currently blocks are being stored in a redux store in a simple object workspace
of the type { [id: string]: Block } .

Two approaches:
o Use context-api instead

= We can remove redux from the builder completely and can use react
context api instead with the help of usecontext hook.

Music Blocks 4 Project Builder Integration

= This will prevent any kind of conflicts with any future use of redux in the
main musicblocks4 app.

o Use redux
= We can go with the current implementation of redux.

= This will require us to configure a redux store in the main musicblocks app,
and will result in tight coupling of the project-builder with the main app.

e We can export the elockworkspace as a wrapper component, and along with it,
functions to get the current workspace state will also be exported.

¢ So the imports will look something like:

import ProjectBuilder from "@sugarlabs/musicblocks-v4-builder-framework"
import {getBuilderState} from "@sugarlabs/musicblocks-v4-builder-framework"

e getsuilderstate Will return the current blocks on the canvas.

Integration of Project builder with Programming Framework

Brick Tree to Syntax Tree:

Loops

//—é. Action Bloek
Conditions

plow c_!a\mp E.lo;:_k

stoack c!o\mp block

Music Blocks 4 Project Builder Integration

/N 1

Ar nts
3;:; " Il Pot Statements

argument block (nested) Plow block

/\ /\
Arquments I- Values

Ua.lug E.I:::c,h:

* For each type of core element in programming framework, we need a almost one-
to-one mapping to the block elements on the canvas.

e Currently, in musicbhlocksva YAML code is given in editor, which is fed into the
builderogram() function, where, it is converted into JSON and programming-framework
APIs are used to build the programming.

e On creating mapping between blocks we can get the list of current instructions
directly by tapping into the project-builder State.

o Examples:

“box” block has info in JSON about it's name and value

Music Blocks 4 Project Builder Integration

e value can be further nested into mathematical operations.
o “value” block can directly return values

o For nested operations, args can be resolved recursively to finally form a
nested JSON

store in box

"101",

"202",

ength": 1 \
g g alue",

["105"],

"105",
gsLength": 2

"202"],

o After resolving args, this will be the resultant JSON

minus

Music Blocks 4 Project Builder Integration

» After getting the resolved JSON for the canvas, we can build the program using

@sugar labs/musicblocks-v4-1ib APIs

Syntax Tree to Brick Tree:
* Generating a brick tree from a syntax tree will be pretty straightforward.

* We can easily generate a brick tree from the crumbs by resolving nesting in JSON
and generating bricks with corresponding IDs and arguments.

+ A simple iteration over the crumbs/instructions while keeping track of the first and
previous element, and recursively transferring control to the nested instructions, we
can get a flat array for the brick tree.

Palette Design
Key points in designing the palette:

+ Each class of functions/bricks will be designated a single color.

¢ These classes can be subdivided further, e.g.:

Music

Pitch
Scalar Step
Pitch Number

Hertz
Fourth

Interval

Set Key
Mode length

» Blocks can be predefined in a JSON object for each palette component.

¢ A palette element would look something like this:

Music Blocks 4 Project Builder Integration

{

id: string;
argsLength: number;

Wk 173 args: string[];

block:

¢ The state of the palette can be stored in redux, this will allow easy interfacing with

the project builder
o On dragging and dropping a block, dispatch a function to add a block in the

redux store

o Access blocks stored in redux store from the builder.
e Add a search bar on top of the palette

e Design ideas for the palette:

Math

Action Numbers

o i

Flow
Rhythm
Music

Sound

Sensing
/'\) !
v
Media

Boolean

Motion

Variables

o .

Ensemble

Mockup in Figma

Music Blocks 4 Project Builder Integration

https://www.figma.com/file/fEYHiNWIFZIG9TFIHcfbsL/Palette-Deisgn---MusicBlocks?node-id=0%3A1&t=h1Zh3kGZuwyzdHf6-1

Timeline

Bonding Period

| May4-28

[] Getting a deeper
understanding of the
codebase

[C] Work on small
issues

[] Learn the logic and
flow.

Week 3

June 12 - 18

[] Continue with the
integration

] Implement
functions to tap into
builder state

[] Making different
types of blocks for the
brick tree

Music Blocks 4 Project Builder Integration

Week 1

May 29 - June 4

[] Start with refactoring
the prototype

[[] Resolve some
bugs in logic of
project-builder

[] Make it suitable
to be used as a sub-
module

Week 4

June 19- 25

[] Brick Tree To
Syntax Tree

[] Implement Brick
tree to Syntax tree
conversion functions

Week 2

June 5-11

[] start with the
integration

[] Rewriting/Improve
state management of
the builder

[] start working on
the Wrapper
Component

Week 5

June 25 - July 2

[] Brick Tree To Syntax
Tree

[] Testing and
debugging

1st Mid-Term Evaluation
July 10-14

Goals for the 1st mid-term evaluation:

[] Integration of the project builder as a wrapper component

[] Having basic blocks of musicblocks (Math blocks, action blocks, etc)

[] Building programs (syntax tree) using a brick tree.

Week 6 - 7

July 16 - 29

[] Syntax Tree to Brick Tree

[] Implement Syntax to Brick Tree
conversion functions

[] Testing and debugging of the
same

Week 10

Aug 13 - 20

[] Interfacing the Palette with the
builder

[[] Make a redux slice to handle the
palette state

Music Blocks 4 Project Builder Integration

Week 8 -9

July 30 - Aug 12

[] Start working on Palette
[] Make a palette component

[[] Make blocks to include in the
palette

[[] Make a canvas column in the
palette to preview blocks and drag
and drop blocks from

2nd Mid-Term Evaluation

Aug 21 - 28

Goals for the 2nd mid-term evaluation:

[] A working canvas with an interfaced
palette

[] Palette supporting drag and drop
feature to drop elements to the canvas

10

[] Add the currently dragged block [] Working search functionality in the
to the workspace by getting the palette.
cursor position

[C] Add a search-bar

Week 11 - 12 Week 13 - 14
Aug 29 - Sep 11 Sep 12 - 25

[] Testing and debugging [] Add block functionalities per block
[] Resolve bugs [] Click to trigger for action blocks
[] Write basic unit tests for core [] Adding comments or notes to
functionalities. blocks

[] Copy/Delete functionality

Week 15 - 16 Week 17 - 22
Sep 26 - Oct 2 Oct 3 - Nov 6
[] Workspace functionalities and [] Testing and Debugging

additional features [[] Perform manual end to end and

[] Expand/Collapse toggle for flow unit testing

clamp blocks [] Debug accordingly

[C] Add buttons for - Zoom in/out,
Reset scale, Import/export

[] Write tests for core functionalities.

[] Implementing other extra
functionalities

Music Blocks 4 Project Builder Integration

Q. How many hours will you spend each week on your project?

Ans.: | can devote approximately 30-35 hours a week to GSoC, as it will be my top
priority during the summers.

Q. How will you report progress between evaluations?

Ans.: | will make a weekly report of what has been accomplished each week. To report
progress between evaluations, | will submit these weekly reports and show progress to
mentors during a meeting.

Q. Discuss your post-GSoC plans. Will you continue contributing
to Sugar Labs after GSOC ends?

Ans.: | plan to continue contributing to the MusicBlocks community even after
GSoC, as | will have a deeper understanding of the project. If | qualify, | would like to
mentor for MusicBlocks in future GSoC terms.

Music Blocks 4 Project Builder Integration

12

