
Music Blocks 4 Project Builder Integration 1

Music Blocks 4 Project Builder
Integration
Basic Details
Name: Husain Shahid Rao

Email: husainshahidrao@gmail.com

Github: https://github.com/husain3012

Language: English, Hindi

Location: India, (IST, GMT+5:30)

https://www.husainshahidrao.com/

Open Source Contributions

Sugarlab - MusicBlocks

https://github.com/sugarlabs/musicblocks/pull/3203

https://github.com/sugarlabs/musicblocks-v4-builder-framework/pull/5

Other Contributions and work:

https://github.com/husain3012/automatasim

https://github.com/Greenstand/treetracker-admin-client/pull/246

Project Details

Music Blocks 4 Project Builder Integration
Building project builder as a wrapper component from the prototype, and adding
functionality to access musicblocks-v4-lib APIs.

It would provide sugar labs with an all-new musisblock-v4, which will be much smoother
and more robust than its predecessor.

https://www.husainshahidrao.com/
https://github.com/sugarlabs/musicblocks/pull/3203
https://github.com/sugarlabs/musicblocks-v4-builder-framework/pull/5
https://github.com/husain3012/automatasim
https://github.com/Greenstand/treetracker-admin-client/pull/246

Music Blocks 4 Project Builder Integration 2

General Objectives:

Refactor the prototype code

Integrate it in musicblocks-v4

Create a wrapper component Project Builder (builder) in musicblocks-v4

Add utilities to the wrapper component so that the Project Builder component can
communicate with the Specification and Syntax Tree APIs of the Programming
Framework

Create a Palette (palette) component

Proposed Solution

Refactoring the prototype
Improving design of blocks, take inspiration from MIT’s Scratch

Material design and colors for various blocks

Highlighting drop-zones

Canvas with scrollable view and zoom in/out controls, etc.

Making project suitable for to be used as a sub-module

Remove boilerplate code for the standalone project builder application, and add
necessary exports. These exports will include the wrapper component for the builder

https://github.com/sugarlabs/musicblocks-v4-lib
http://scratch.mit.edu/

Music Blocks 4 Project Builder Integration 3

and other functions to tap into the state management of the builder.

Proposed directory structure:

Creating a wrapper component
Handling app (project-builder) state via redux or context api:

Currently blocks are being stored in a redux store in a simple object workspace
of the type { [id: string]: Block } .

Two approaches:

Use context-api instead

We can remove redux from the builder completely and can use react
context api instead with the help of useContext hook.

Music Blocks 4 Project Builder Integration 4

This will prevent any kind of conflicts with any future use of redux in the
main musicblocks4 app.

Use redux

We can go with the current implementation of redux.

This will require us to configure a redux store in the main musicblocks app,
and will result in tight coupling of the project-builder with the main app.

We can export the BlockWorkspace as a wrapper component, and along with it,
functions to get the current workspace state will also be exported.

So the imports will look something like:

import ProjectBuilder from "@sugarlabs/musicblocks-v4-builder-framework"
import {getBuilderState} from "@sugarlabs/musicblocks-v4-builder-framework"

getBuilderState will return the current blocks on the canvas.

Integration of Project builder with Programming Framework
Brick Tree to Syntax Tree:

Music Blocks 4 Project Builder Integration 5

For each type of core element in programming framework, we need a almost one-
to-one mapping to the block elements on the canvas.

Currently, in musicblocksv4 YAML code is given in editor, which is fed into the
buildProgram() function, where, it is converted into JSON and programming-framework
APIs are used to build the programming.

On creating mapping between blocks we can get the list of current instructions
directly by tapping into the project-builder state.

Examples:

“box” block has info in JSON about it’s name and value

Music Blocks 4 Project Builder Integration 6

value can be further nested into mathematical operations.

“value” block can directly return values

For nested operations, args can be resolved recursively to finally form a
nested JSON

After resolving args, this will be the resultant JSON

Music Blocks 4 Project Builder Integration 7

After getting the resolved JSON for the canvas, we can build the program using
@sugarlabs/musicblocks-v4-lib APIs

Syntax Tree to Brick Tree:

Generating a brick tree from a syntax tree will be pretty straightforward.

We can easily generate a brick tree from the crumbs by resolving nesting in JSON
and generating bricks with corresponding IDs and arguments.

A simple iteration over the crumbs/instructions while keeping track of the first and
previous element, and recursively transferring control to the nested instructions, we
can get a flat array for the brick tree.

Palette Design
Key points in designing the palette:

Each class of functions/bricks will be designated a single color.

These classes can be subdivided further, e.g.:

Blocks can be predefined in a JSON object for each palette component.

A palette element would look something like this:

Music Blocks 4 Project Builder Integration 8

The state of the palette can be stored in redux, this will allow easy interfacing with
the project builder

On dragging and dropping a block, dispatch a function to add a block in the
redux store

Access blocks stored in redux store from the builder.

Add a search bar on top of the palette

Design ideas for the palette:

Mockup in Figma

https://www.figma.com/file/fEYHiNWIFZIG9TFIHcfbsL/Palette-Deisgn---MusicBlocks?node-id=0%3A1&t=h1Zh3kGZuwyzdHf6-1

Music Blocks 4 Project Builder Integration 9

Timeline

Bonding Period

May 4 - 28

 Getting a deeper
understanding of the
codebase

 Work on small
issues

 Learn the logic and
flow.

Week 1

May 29 - June 4

 Start with refactoring
the prototype

 Resolve some
bugs in logic of
project-builder

 Make it suitable
to be used as a sub-
module

Week 2

June 5 - 11

 Start with the
integration

 Rewriting/Improve
state management of
the builder

 Start working on
the Wrapper
Component

Week 3

June 12 - 18

 Continue with the
integration

 Implement
functions to tap into
builder state

 Making different
types of blocks for the
brick tree

Week 4

June 19- 25

 Brick Tree To
Syntax Tree

 Implement Brick
tree to Syntax tree
conversion functions

Week 5

June 25 - July 2

 Brick Tree To Syntax
Tree

 Testing and
debugging

Music Blocks 4 Project Builder Integration 10

1st Mid-Term Evaluation

July 10 - 14

Goals for the 1st mid-term evaluation:

 Integration of the project builder as a wrapper component

 Having basic blocks of musicblocks (Math blocks, action blocks, etc)

 Building programs (syntax tree) using a brick tree.

Week 6 - 7

July 16 - 29

 Syntax Tree to Brick Tree

 Implement Syntax to Brick Tree
conversion functions

 Testing and debugging of the
same

Week 8 - 9

July 30 - Aug 12

 Start working on Palette

 Make a palette component

 Make blocks to include in the
palette

 Make a canvas column in the
palette to preview blocks and drag
and drop blocks from

Week 10

Aug 13 - 20

 Interfacing the Palette with the
builder

 Make a redux slice to handle the
palette state

2nd Mid-Term Evaluation

Aug 21 - 28

Goals for the 2nd mid-term evaluation:

 A working canvas with an interfaced
palette

 Palette supporting drag and drop
feature to drop elements to the canvas

Music Blocks 4 Project Builder Integration 11

 Add the currently dragged block
to the workspace by getting the
cursor position

 Add a search-bar

 Working search functionality in the
palette.

Week 11 - 12

Aug 29 - Sep 11

 Testing and debugging

 Resolve bugs

 Write basic unit tests for core
functionalities.

Week 13 - 14

Sep 12 - 25

 Add block functionalities per block

 Click to trigger for action blocks

 Adding comments or notes to
blocks

 Copy/Delete functionality

Week 15 - 16

Sep 26 - Oct 2

 Workspace functionalities and
additional features

 Expand/Collapse toggle for flow
clamp blocks

 Add buttons for - Zoom in/out,
Reset scale, Import/export

 Implementing other extra
functionalities

Week 17 - 22

Oct 3 - Nov 6

 Testing and Debugging

 Perform manual end to end and
unit testing

 Debug accordingly

 Write tests for core functionalities.

Music Blocks 4 Project Builder Integration 12

Q. How many hours will you spend each week on your project?
Ans.: I can devote approximately 30-35 hours a week to GSoC, as it will be my top
priority during the summers.

Q. How will you report progress between evaluations?
Ans.: I will make a weekly report of what has been accomplished each week. To report
progress between evaluations, I will submit these weekly reports and show progress to
mentors during a meeting.

Q. Discuss your post-GSoC plans. Will you continue contributing
to Sugar Labs after GSOC ends?
Ans.: I plan to continue contributing to the MusicBlocks community even after
GSoC, as I will have a deeper understanding of the project. If I qualify, I would like to
mentor for MusicBlocks in future GSoC terms.

