
GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Sugarizer Word Puzzle and Chart activities

Google Summer of Code 2023 – Project Proposal

About Me

What is your name?

My name is Vedant Sharma, I am a 3rd year computer science

undergraduate student at Galgotias University, Greater Noida India.

Emails and Contacts:

Primary Email: vedants2003@gmail.com

Secondary Email: 11vedantsharma@gmail.com

Github: VedantSharma11

Linkedin: vedantsharma13

Matrix IRC: VedantSharma11

Phone: (+91) 8742967471

(I will be reachable anytime through my Mobile No. and Email)

What is your first language? (We have mentors who speak multiple

languages and can match you with one of them if you'd prefer.)

My first language is Hindi but I am proficient in speaking, reading,

writing, and understanding English, I can effectively communicate and

express my ideas with clarity and precision in English.

mailto:vedants2003@gmail.com
mailto:11vedantsharma@gmail.com
https://github.com/VedantSharma11
https://www.linkedin.com/in/vedantsharma13/

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Where are you located, and what hours (UTC) do you tend to work?

(We also try to match mentors by general time zone if possible.)

I am located in New Delhi, India and my time zone is Indian Standard

Time (UTC + 5:30). I am planning to work from 6:00 to 12:00 (UTC) but

my timings are flexible. I'm very excited to work on this project during the

summer and I can surely manage my time and be active when the

mentors are available.

Have you participated in an open-source project before? If so,

please send us URLs to your profile pages for those projects or

some other demonstration of the work that you have done in open-

source. If not, why do you want to work on an open-source project

this summer?

I have experience in Open Source. I love to build projects in

collaboration with developers and the community. I am actively

contributing to open-source projects. Notably I recently took part in

Hacktoberfest, where I was able to make valuable contributions. You can

see them here:

 https://github.com/Zack-Dx/Twitter-Landing-Page/pull/50

 https://github.com/K0DEL/HacktoberFest-2022/pull/14

 https://github.com/pranjay-poddar/Dev-Geeks/pull/647

 https://github.com/pranjay-poddar/Dev-Geeks/pull/713

Details of my other contributions can be found on my Github profile here.

I have been contributing to Sugar Labs for the past month. During this

time, I have contributed to the Sugarizer repository and fixed bugs, UI

changes, enhancements, and ported libraries & packages. This last

month was a great learning experience. I contributed to Sugar Labs by

finding and fixing some issues as follows:

These are all contributions from my side on sugarizer:

https://github.com/Zack-Dx/Twitter-Landing-Page/pull/50
https://github.com/K0DEL/HacktoberFest-2022/pull/14
https://github.com/pranjay-poddar/Dev-Geeks/pull/647
https://github.com/pranjay-poddar/Dev-Geeks/pull/713
https://github.com/VedantSharma11

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Pull request link

Description

Status

#1242

Ported Dollar activity from
Bootstrap tour to IntroJS tour

Merged

#1243

Ported Flip activity from Bootstrap
tour to IntroJS tour

Merged

#1327

Mapped keys for changing pages in
Video-viewer activity

Merged

#1307

Fixed entire Introjs tour’s bugged UI
in Measure activity

Merged

#1247

Fixed Falbracman activity’s intro
popup Header text & cross button

UI issue

Merged

#1300

Fixed activity dropdown’s UI in
stopwatch activity

Merged

#1310

Excluded bootstrap tour css file in
curriculum activity to remove bloat

from the codebase

Merged

#1311

Refactored the codebase by
removing redundant jQuery file to

optimize the codebase

Merged

I have made over 28 commits till now in Sugar Labs. All of these

merged commits and issues can be found below

You can view all my open and closed PR’s at: Sugarizer PR

You can view all my open and closed issues at: Sugarizer Issues

I'm an open-source enthusiast with multiple projects on my GitHub

profile. Contributing to open source has helped me learn and grow, and I

am excited to apply for the Google Summer of Code program to further

https://github.com/llaske/sugarizer/pull/1242
https://github.com/llaske/sugarizer/pull/1243
https://github.com/llaske/sugarizer/pull/1327
https://github.com/llaske/sugarizer/pull/1307
https://github.com/llaske/sugarizer/pull/1247
https://github.com/llaske/sugarizer/pull/1300
https://github.com/llaske/sugarizer/pull/1310
https://github.com/llaske/sugarizer/pull/1311
https://github.com/llaske/sugarizer/pulls?q=is%3Apr+author%3AVedantSharma11+
https://github.com/llaske/sugarizer/issues?q=is%3Aissue+author%3AVedantSharma11+

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

expand my skills and knowledge while also contributing to impactful

open-source projects.

Prerequisites for project

As given in the idealist. I already have good working knowledge in

HTML5, Javascript, ReactJs, VueJs framework development. Other than

this I am already familiar with the Sugarizer codebase and have merged

commits into the repository.

I also have completed both Sugarizer Vue.js activity development

tutorial and Sugarizer Vanilla JS activity development tutorial. This

helped me understand how the Sugarizer core works and how activities

are implemented from scratch. Following are the links to my repository of

the implemented tutorials.

 https://github.com/VedantSharma11/Pawn.activity-VanillaJS

 https://github.com/VedantSharma11/Pawn.activity-VueJS

Learning about the Sugarizer codebase and how to work with Sugar

Labs helps me understand how the system works and how different

parts of it are connected. This understanding makes it easier for me to

see how the system functions and relies on each of its components.

https://github.com/VedantSharma11/Pawn.activity-VanillaJS
https://github.com/VedantSharma11/Pawn.activity-VueJS

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

About The Project

What is the name of your project?

The name of my project is Sugarizer Word Puzzle and Chart

activities.

Describe your project in 10-20 sentences. What are you making?

Who are you making it for, and why do they need it? What

technologies (programming languages, etc.) will you be using?

Sugarizer is a valuable educational tool. It can work on the web as a

webapp and also be used as a mobile app, thus giving Sugar Users a

wide range of options. However, there is currently no activity in

Sugarizer that provides users or students with a way to learn and

understand data visualization. The proposed project aims to integrate a

Chart activity similar to the Sugar chart activity into Sugarizer activities.

The project also aims to include a Word puzzle template in the

Exerciser activity. The project will utilize technologies such as HTML5,

JavaScript, ReactJS, and VueJS.

Project Objective:

The objective of this project is to develop a chart activity that resembles

the Sugar Chart activity and can be used by students/users to gain a

better understanding of data visualization. Additionally, a word-puzzle

template will be included in the Exerciser Activity, which is an

educational activity used by educators to create curriculum-based

exercises for their students.

Project Goals:

The goal of this project are:

 To implement a Chart activity in Vue.js inside sugarizer that

resembles the sugar chart activity.

 To implement a Word puzzle template within the Exerciser activity.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

WORD PUZZLE TEMPLATE IMPLEMENTATION

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Explanation:

Once the user opens a new instance of the exerciser activity he would

see the default Word-Puzzle exercise listed on the screen if its present

in the datastore, he can either play it from there or he can choose to

make a new one by going to editor button and then add exercise this will

open all the templates there are along with the word-puzzle template.

After choosing the word-Puzzle template, a form will open, the user fills

in the words for the word-puzzle, user will have option to finish or test

the exercise or to add more words.

After adding all the words the user clicks on the finish exercise and

gets redirected to the screen where other exercises are listed along with

the new word-puzzle exercise he just created. From here user can either

play the activity or share it on network.

Modifying ‘template.js’ to add new word puzzle template:

 This will add a new word- puzzle card on the add exercise page

from where the user can click on it and open the word-puzzle

form to generate the exercise.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Creating a new file ‘WordPuzzleForm.js’ inside

(src/containers/Builders) :

 A new ‘WordPuzzleForm.js’ file will be created including all the

features and implementations for the word-Puzzle form.

Datastore object for all templates:

 Sharing:

The object with words array in the above datastore object is

shared whenever the user will share the word-Puzzle exercise.

The object is sent from the host to all other users on the network

using presence.

 Locally:

Once the user builds the exercise, the object with words array is

stored in the datastore. If the instance of the activity is copied

locally through the journal. Then, when a user opens the activity

the datastore object will contain the questions array and hence the

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Word-Puzzle exercise will show on the home page of listed

exercises.

Word-Puzzle Template:

For the word-puzzle template, the question object for the word-puzzle

template will contain an array containing all the words that the user

enters.

This object containing words array will then get stored in the

datastore which will afterwards be used for generating the crossword

grid. More features like Hints for each word can be added to the object

later.

The Word-Puzzle form will look something like this:

 The word-puzzle form will allow users to create the exercise it will

have a mandatory title field for the title of the exercise.

 Then there will be a Add-words section to add the words for

generating the word-puzzle grid, users can add or remove words

by using the’+’ or ‘-’ buttons.

 Users can add the words using different MULTIMEDIA types like

text, audio, image, video, text to speech using ‘utils.js’.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

 It will have 2 buttons ‘test exercise’ & ‘finish exercise’ the test

button will allow users to test the exercise before

submitting/generating it. Finally the finish button will generate the

exercise and add it to the exercise List on the home screen and

the data will be stored in the datastore.

Form options:

1) Title field:

The user will be able to add title for the exercise here. The title field

will be associated with a onChange attribute that will be linked to a

function. The function will check if the title field is empty or not if its

empty then user will not be able to submit the form.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

2) Remove word:

This will only remove a word from the words array if the current

length of the array is greater than one. This is to ensure that at

least one word is available for generating the word-puzzle. The

button will be assigned an onClick attribute associated with a

removeOption function.

3) Add new word:

This will enable users to include additional words in the word-

puzzle, it allows the addition of new words into the words array for

the word-puzzle template. An onClick attribute associated with the

AddOption function is assigned to the button.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

4) Finish/ Test Exercise:

The finish exercise button will submit the form and save the data In

the datastore while performing validations on the form. After saving

the form data the user gets redirected to the home screen from

where he can play the exercise, while test exercise button saves

the form data locally to allow users to test the exercise before

submitting it.

This is just a rough implementation and not a rigid one. The functions

and implementations may change once I start working on the project and

start developing the ‘wordpuzzleform.js’ .

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Creating a new file ‘WordPuzzlePlayer.js’ inside

(src/containers/Players):

 Once the user fills the words and details in the word-puzzle form,

which gets saved in the word-puzzle template in the datastore and

the user gets redirected to the listed exercise section. To enable

the user to play the exercise, the 'WordpuzzlePlayer.js' will be

utilized for implementation.

 This file will also contain the logic necessary to generate the

crossword grid for the word-puzzle exercise using the array of

words that the user entered in the form. The player will be able to

interact with the puzzle, finding the words and seeing if they are

correct or not.

Implementation of Crossword Grid:

 Determine the dimensions of the grid:

The first step will be to determine the dimensions of the grid based

on the length of the longest word in the array. For example, if the

longest word is 10 letters long, we will create a 12 x 12 grid to

provide some extra space.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

 Initialize the grid:

Once you know the dimensions of the grid, you can initialize it as

an array of arrays using a loop. For example, if your grid is 12 x

12, we might initialize it like this:

 Place the words in the grid:

Now that you have a blank grid, you can start placing the words in

it. Begin by selecting a word from the array at random. Then,

choose a random starting position for the word on the grid. You

can choose whether the word will be placed horizontally or

vertically at random as well. Once you have determined the

starting position and orientation of the word, you can place it in the

grid using a loop.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

 Fill in the empty spaces:

After placing the words in the grid, there will be some empty

spaces left. You can fill these spaces with random letters to make

the puzzle more challenging.

 Return the completed grid:

Once the grid is complete, you can return it to be displayed to the

user.

Results after submitting the exercise:

 Once the user submits the exercise his results will be shown using

customized charts displaying users score in percentage, his/her

time in minutes and finally a details section to show how many

words the used found in the grid. For displaying the charts we will

use ‘react-chartjs-2’ library which is already being used for all

other exercises in the activity.

Again This is just a rough implementation and not a rigid one. The

functions and implementations may change once I start working on the

project and start developing the ‘WordPuzzlePlayer.js’ .

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

CHART ACTIVITY IMPLEMENTATION

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Explanation:

When starting the activity:

 The user has two options to open the activity: from the list /

favourites view or from a shared instance of the activity on the

neighbourhood view.

 If the user joins /opens a shared instance, the activity will start

with the colours and context of the user who shared it on network.

 If the user opens the activity from the list/favourites view, two

scenarios are possible:

1. If the instance of the activity is already present in the

journal (which is stored in the datastore), the activity will

resume from the last state the user left it in.

2. If the instance of the activity is not present in the

journal, the activity will start aa a new activity.

After starting the activity:

 The user can interact with the activity, using the various features

and functions within it.

 Alternatively, the user can share the activity on the network, using

presence to let others join.

 When the user shares the activity, others can join in and interact

with it, while also bringing their own colours and context to the

activity.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

This is how I will try to implement the chart activity:

Sugarizer already comes with a template for the Vue.js activities that

includes all the sugar-web components for implementing standard

sugarizer features:

 SugarToolbar.js

 SugarJournal.js

 SugarIcon.js

 SugarPresence.js

 SugarPopup.js

 SugarActivity.js

 SugarL10n.js

And some other components, using all these components we are going

to implement the chart activity in sugarizer.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Before using any resources for the activity, we will add the sugar-

activity component with v-on: initialized directive bind-ed with the

initialized: function() defined in methods in the Vue app.

Activity toolbar:

 The toolbar for chart activity will have various buttons for

implementing different functionalities, such as selecting the chart

type, Adding or removing the data, editing the axis labels,

exporting the chart as image, and more.

 This can easily be done by using the SugarToolbar.js component

which sets up the toolbar at the top of the screen. This component

basically defines 2 components: sugar-toolbar and sugar-

toolitem (buttons).

 The component can be added to the html file and we can add all

the the buttons here:

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

1. Add and Remove button:

 The add button will enable users to include new labels along

with their values to be displayed on the charts on the screen

whereas the remove button will remove the selected label

and it value (key:value pair) from the List object that will be

defined for the labels and values which I will be explaining

later.

 The button will be assigned with the v-on:click directives to

trigger specific functions to handle the events.

2. Buttons to change the chart type:

 These four buttons will enable the user to change the chart

type to a vertical bar chart , horizontal bar chart, line chart or

a pie chart.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

 To implement this I will create a separate chart component

using an external library chart.js that takes the type of chart

and the array of objects in which the label: value pairs are

stored as Props , and depending upon which button is

pressed the props will pe passed and the charts will get

changed.

3. Customization buttons with custom pallets:

 To create custom palettes sugar-web provides the palette

library, which is the base class for all palette objects.

 To create a custom palette for the 2 buttons in the chart

activity . We will have to create a palette directory in

src directory of the project.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

 There we will add 4 files which will be Toolbuttonpalette.js,

Toolbuttonpalette.html and similarly Textbuttonpalette.js,

Textbuttonpalette.html.

 Now to the both the buttons in the sugar-toolitem component

we will specify some attributes such as palette-file, palette-

class, palette-title.

 Both the javaScript files of palettes will include the custom

functionalities of the palettes and the html files will define the

Ui of the palettes.

 To implement palettes I will refer to the below documentation.

 https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/Vue

JS/step8.md

4. Stop, Tutorial, Fullscreen buttons:

 The “stop” button will be used to stop the activity and at the

same time saving its instance in the journal.

 The "Tutorial" button will start a tutorial that provides a

detailed explanation of how to use the activity. I will explain

the implementation of tutorial later. Additionally, there is a

"Full Screen" button that allows the user to maximize the

chart canvas and view it on the entire screen.

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step8.md
https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step8.md

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Journalizing the Chart Activity:

 Journal is used for saving the instance of the activity so that

whenever the user opens the activity again it starts from the exact

state the user left it in.

 To use the journal, Sugar-web provides sugar-journal

component that needs to be added to the html file inside app

element.

Store context in datastore:

 To store the context, we have to handle the datastore. The

datastore is the place where Sugar stores the Journal. During the

activity setup, Sugar-Web automatically initializes the datastore for

the activity.

 The context in the case of Chart activity is the List of all the

label and values that the user enters , so that whenever the user

opens the activity again it opens with similar context that the user

left it in.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

 The saveData() method allows you to store a JavaScript object

into the datastore which can be retrieved later. The data is

converted to JSON automatically and stored as a text string.

 The SugarJournal component automatically retrieves the data

inside Journal (if any) for the current activity and emits an event

journal-data-loaded. Then we can handle this event to show the

data when the activity is loaded. The data is parsed from the JSON

format and returned as a JavaScript object.

 So to save the context we will add a v-on:click directive on the

stop button so whenever the user closes the activity the current

state of the activity will get saved in the journal.

Load the saved instance when user starts the activity:

 When the user starts the activity The Sugar-Journal component

automatically retrieves the data inside Journal (if any) for the

current activity and emits an event journal-data-loaded.

 To handle this event we need to add a v-on:journal-data-

loaded=”onJournalDataLoaded” directive on the Sugar-Journal

component and handle it using a function.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Share Activity Feature using Presence in Chart Activity:

 Presence is a library provided by sugar-web that enable users to

interact with each other on same activity. Using presence users

can share instances of their activity on the network and can join

other users shared activity’s instance.

 We will start by including the network button in the toolbar and

setting up its palette.

 The SugarPresence component handles the integration of the

network-button palette. We just need to add these 2 attributes to

the component palette-file="sugar-web/graphics/presence

palette" and palette-class="PresencePalette".

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Share the Chart Activity instance:

 We will keep a data variable as a reference to the component

instance as it will be used multiple times and we will add a

mounted: function () in the Vue main app.

 Now we will update the sugar-toolitem for network-button to

integrate presence we will first handle the click on the share button

for this we will need to add few more attributes to network-button

sugar-toolitem palette-event="shared" , v-if="SugarPresence",

v-on:shared="SugarPresence.onShared".

 Now when user clicks on the share button, the shared event

defined by palette-event gets triggered & the activity will get

shared and will be visible to others on the neighbourhood view.

This will be handled by the onShared() method of the component.

 The v-if directive will render this button only if SugarPresence

component exists.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Now to handle the event when a user joins a shared activity I will use 2

events provided by the sugar-presence component.

 data-received

 user-changed

For rest of the implementation, I will refer to this resource:

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step6.m

d

Implementation of Export chart as image feature:

 In order to export/save charts as image I will add a button in the

toolbar with a v-on:click directive that will trigger a function to

save the chart as image in the journal

.

 The capture-image function() binded to the sugar-toolitem will save

image in the journal and create its entry with its mimetype, title,

timestamp, creation type etc.

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step6.md
https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step6.md

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Localization of the Chart Activity:

 Localizing the chart activity will allow the activity to run in various

languages.

 To localize the activity we will yet again use another sugar-web

component called sugarL110n.

 To localize all the strings in the activity we will modify the locale.ini

file where we will write the translations for all the strings in different

languages.

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Integrating tutorial:

 To implement the tutorial tour in the activity we will use the intro.js

library along with the sugar-tutorial component provided by

sugar-web.

 We will add a button using the sugar-toolitem component and then

assign v-on:click directive to it which triggers a onHelp function.

 The function contains a array of objects that gets passed on to the

show() method of the sugar-tutorial component.

 Localization for the tutorial is done in the locale.ini file. I will refer

to this documentation for integrating the tutorial.

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/ste

p9.md

This is just my rough implementation for the chart activity it may change

when I actually start implementing the activity according to the project

needs.

Dependencies:

 Bootstrap: Library to help build responsive design. The UI will be

capable to running on desktops to phones.

https://getbootstrap.com/

 React-chartjs-2(for word-puzzle template results): Library will

be used to show results using charts so that the student can

visualize his results. https://react-chartjs-2.js.org/

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step9.md
https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step9.md
https://getbootstrap.com/
https://react-chartjs-2.js.org/

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

 Vue-Chart.js (for chart activity): Library to integrate different

types of charts in the activity with custom data. https://vue-

chartjs.org/

Deliverables:

By the end of my GSoC period I plan to deliver the following features in

Sugarizer.

 Implementation of word-puzzle template in the exerciser activity

 Implementation of new chart activity in Vue.js with following

features:

1. Localization

2. Integration with journal

3. Share activity feature using presence

4. Export chart as image functionality

5. Responsiveness

6. Intro.js tutorial integration

What is the timeline for development of your project? The Summer

of Code work period is from mid-May to mid-August; tell us what

you will be working on each week. (As the summer goes on, you

and your mentor will adjust your schedule, but it's good to have a

plan at the beginning so you have an idea of where you're headed.)

Note that you should probably plan to have something "working

and 90% done" by the midterm evaluation (end of June); the last

steps always take longer than you think, and we will consider

cancelling projects which are not mostly working by then.

This is the timeline I plan to follow:

Time Period

Plan

April 4 – May 4, 2023 Application review period

https://vue-chartjs.org/
https://vue-chartjs.org/

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Week One/Two Explore more about sugarizer and its
architecture.

 Learn some new technologies, in
which sugarizer activities are built.

Week Three/Four Gain good understanding of
require.js and vue.js frameworks

 Will learn how sugar components
work.

May 4 – May 28, 2023 Community bonding period

 Discuss the implementation of the
activities with mentor.

 Go through the documentation of
vue.js to understand code integration

 explore other tech stack required for
the project.

May 29, 2023 Coding period starts

Week one & two
(May 28 – June 11,
2023)

 Setting up the environment for adding
word-puzzle template and then build
some UI.

 Start building the Word-puzzle form.

Week three & four
(June 12 – June 25,
2023)

 Start implementing the play
functionality for the exercise.

 Implement the edit and delete
exercise feature.

Week five & six
(June 26 – July 9, 2023)

 Implement the crossword grid logic to
generate grid.

 Implement the results section using
react-chartjs-2 library.

 Implement the share exercise
functionality.

July 10 – July 14, 2023 Midterm evaluation

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Week seven & eight
(July 15 – July 28, 2023)

 Setting up the environment for the
chart activity in sugarizer.

 Start by building up the chart activity
toolbar with different buttons and
functionalities.

Week nine & ten
(July 29 – August 11,
2023)

 Build the list section and the chart
section below the toolbar.

 Implement Vue-chart.js to integrate
charts in the exercise.

Week eleven & twelve
(August 12 – August
25, 2023)

 Handle presence in the activity using
sugar-presence.

 Handle the datastore and journal for
the activity.

 Add the export chart as image
feature in the toolbar.

August 28 – September
4, 2023

 Mentors submit final GSoC
contributor evaluation

 Coding period ends

Convince us, in 5-15 sentences, that you will be able to

successfully complete your project in the timeline you have

described. This is usually where people describe their past

experiences, credentials, prior projects, schoolwork, and that sort

of thing, but be creative. Link to prior work or other resources as

relevant.

I am not just a developer, but also a coding enthusiast who enjoys

implementing various projects. For past 4-5 months, I have been

working on developing Node.js, React.js & Vue.js applications. Over the

last month, I have been engaging with the community to gain insights

into the organization's needs and the required features for this project.

Since I have no other commitments during my college summer break, I

can fully dedicate myself to GSOC, and I am confident that I can achieve

the project goals within the given timeframe without any hindrances.

I am an active contributor of Sugar Labs for past month with over 28

commits merged, spending this much time with the codebase helped

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

me understand it in a better way. --Issues (6 open, 4 closed) --Pull

Request (17 closed, 0 open).

I have gained experience working collaboratively in different hackathons,

which has helped me develop a strong understanding of teamwork.

Recently, my team and I won a hackathon where we designed a web

application focused on alerting the users during natural disasters.

 https://drive.google.com/vedant/file/d/15lNhUa/view?usp=sharing

I possess a good understanding of Sugarizer's core architecture and

have hands-on experience in creating activities from scratch using both

VanillaJS and VueJS frameworks. Check them below

 https://github.com/VedantSharma11/Pawn.activity-VanillaJS

 https://github.com/VedantSharma11/Pawn.activity-VueJS

These are some of the projects that I have built:

MERN Chat Application:

https://drive.google.com/vedant/file/d/15lNhUa/view?usp=sharing
https://github.com/VedantSharma11/Pawn.activity-VanillaJS
https://github.com/VedantSharma11/Pawn.activity-VueJS

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

This is a real-time chat application built using React, styled-components,

Node/Express, MongoDB, and Socket.io. Users can register/login via

email and password, update their profile, and generate random avatars

using DiceBear API. The app allows real-time chatting to users.

https://github.com/VedantSharma11/MERN-chat-app .

Vue.JS Weather Application:

This is a weather app web application that allows users to check the

weather conditions of a specific location. The app uses

OpenWeatherMap API to get the weather data for the user's location or

a specified location. The app also provides users with a search bar

where they can enter the name of any location to get the current weather

conditions for that location. https://github.com/VedantSharma11/Vue-

weather-app .

You and the community

If your project is successfully completed, what will its impact be on

the Sugar Labs community?

https://github.com/VedantSharma11/MERN-chat-app
https://github.com/VedantSharma11/Vue-weather-app
https://github.com/VedantSharma11/Vue-weather-app

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

Sugarizer is a great tool with many features. It can be widely adopted especially

with the advent of smartphones and internet access all around the world.

However there is no activity in sugarizer that teaches data visualization to

students, so with the implementation of chart activity students will we able to

better understand data visualization using various types of charts. Alongside

this with the addition of word puzzle template in Exerciser activity teachers will

be able to build word puzzles related with lessons learned in class and students

can solve the puzzles and see their results. Finally, all this will greatly enhance

the potential to use Sugarizer as a learning platform.

What will you do if you get stuck on your project and your mentor

isn’t around?

If I encounter a problem, my initial step is to search for suitable solutions

online on the web. If I am unable to find a suitable solution, I will reach

out to other developers on the Sugar’s Element channel or mailing list.

Based on my past experience, I have observed that community

members are highly responsive and supportive, I believe that they will

surely help me out. Moreover, I maintain contact with fellow college

students and some seniors who have development experience and can

assist me in resolving any issues that I may encounter.

How do you propose you will be keeping the community informed

of your progress and any problems or questions you might have

over the course of the project?

I plan to maintain an active presence on GitHub by frequently submitting

pull requests to Sugarizer and interacting with mentors, allowing anyone

in the organization to track my progress. Additionally, I intend to write

weekly or biweekly blog posts to update others on my progress, any

obstacles I face, and the solutions I develop. I will remain easily

accessible through Matrix IRC and email at all times.

Describe a great learning experience you had as a child.

When I was in school, I used to actively participate in art-related

competitions. Once, my teacher told me about an inter-school art

competition 1 day before the final date of submission, and even though it

was quite late to start working on my art piece from scratch and finishing

it, I still didn't give up and tried my best to create something unique and

GSoC’23 | Sugar Labs | Sugarizer Word Puzzle and Chart activities

beautiful. I successfully submitted my artwork before the deadline. Even

though I didn't win that competition, it taught me how to stay calm and

focused under stressful situations. It also showed me that with

dedication and hard work, I could achieve something that I thought was

impossible.

FAQ’s

 Will you have any other time commitments, such as school

work, another job, planned vacation etc during the duration of

the program

I have my end semester exams from JUNE 1 – JUNE 15

 What will be your typical working hours and how many hours

per week will you dedicate to this project?

I will be working 5-6 hours on weekdays from 10 am to 4 pm (IST)

and 6-7 hours on Saturday from 10 am to 5 pm (IST). In total (~

50-55 hours per week). But again these timings are flexible and if

the project needs more work they can be changed.

 ~~ END OF PROPOSAL ~~

