
1

Sugarizer Word Puzzle and Chart activities

Google Summer Of Code 2023 - Project Proposal

Harshit Maurya
rockharshitmaurya@gmail.com



2

Table of Contents

Section Page Number

Introduction 3

Motivation 5

Project Details 6

Word Puzzle 8

Chart Activity 22

Timeline 32

Expernce and Project 34

Activity Tutorial Video Link link



3

About You

What is your name?
My name is Harshit Maurya. I am a third-year undergraduate computer
science student at Galgotias University, Greater Noida, India.

What are your email address and Contacts?
Primary Email Address rockharshitmaurya@gmail.com.
Secondary Email Address harshit.21scse1010102@galgotiasuniversity.edu.in
My Github username is rockharshitmaurya
Linkedin Profile Harshit Maurya

What is your first language?
I am fluent in both English and Hindi, with English being my primary language of
communication. I am comfortable expressing myself fluently in both languages, whether
it is through verbal or written means.

Where are you located, and what hours (UTC) do you tend to work? (We
also try to match mentors by general time zone if possible.)

I am located in Greater Noida, India, and operate on the Indian Standard
Time (UTC + 5:30) time zone. While I typically work from 6:00 to 12:00 (UTC), I
remain flexible and can adjust my schedule to meet the needs of the project.
I strongly believe that communication is a key component of project
success, and I am committed to keeping my mentors informed of my
availability and work progress. You can count on my dedication to the
project, and I will remain actively engaged and responsive whenever my
mentor requires my assistance.

https://github.com/rockharshitmaurya
https://www.linkedin.com/in/harshitmaurya/


4

Education Details

I am currently a third-year undergraduate student pursuing a Bachelor of
Technology in Computer Science and Engineering at Galgotias University. Like
many others in my field, I was introduced to the exciting world of programming
and software development during my first year. Since then, I have eagerly delved
into various fields such as Web Development, Data Structures, Algorithms,
Computer Architecture, and Operating Systems. Contributing to open-source

projects has been a rewarding experience for me since my second year.
Throughout my programming journey, I have worked primarily with Web-based
technologies(MERN), in addition to utilizing programming languages such as Java,
C/C++, and Python. Lately, I have also been exploring the fascinating world of
Web3 Technologies to expand my knowledge and skills in this rapidly evolving field

Have you participated in an open-source project before? If so, please
send us URLs to your profile pages for those projects or some other
demonstration of the work that you have done in open-source. If not,
why do you want to work on an open-source project this summer?

I am excited to say that I have extensive experience working on open-source
projects, and I am passionate about developing copyright-free software in
collaboration with other developers and the wider community.

In addition to contributing to several open-source projects, such as Sugar Labs'
Sugarizer, Sugarizer-server, ExerciserReact, and www.

Share links, if any, of your previous work on open-source projects:

I have been dedicated to contributing to Sugar Labs for the past few months,
where I have made valuable contributions to various repositories, including
documentation updates, bug fixes, UI changes, enhancements, and
version/package updates. These past few months have provided me with an
excellent learning opportunity, and I am pleased to share my contributions to
Sugar Labs with you.

https://leetcode.com/HarshitMaurya/
https://github.com/llaske/sugarizer
https://github.com/llaske/sugarizer-server
https://github.com/llaske/ExerciserReact
https://github.com/sugarlabs/www


5

Pull request
link

Description Status

#1244 Ported Tour of XOEditor.activity from bootstrap
to Intro.js

Merged

#156 Improved: Appearance of Exerciser Activity
Title and Description Input Fields

Merged

#1276 Solved: Text Pointer Appearing Instead of Mouse
Pointer on Scrollbar in write Activity

Merged

#395 PortedWhole Sugarizer server's Tour: from
Bootstrap to IntroJS

Open

#1316 Optimizing Sugarizer Codebase: Removing
Unnecessary CSS Code for Improved

Performance

Merged

#1312 Remove unused jQuery library from the project
to reduce file size

Merged

#1308 Refactor: Remove Unused Code for Improved
Efficiency andMaintainability

Merged

#400 Fixed: Error in Installation Instructions for
Sugar Labs Project

Merged

#1296 Fix Text Pointer Appearing Instead of Mouse
Pointer on Scrollbar Across
55 Sugarizer Activities

Open

I have find over 24 issues till now in Sugar Labs. All of these issues can be found
here.

https://github.com/llaske/sugarizer/pull/1244
https://github.com/llaske/ExerciserReact/pull/156
https://github.com/llaske/sugarizer/pull/1276
https://github.com/llaske/sugarizer-server/pull/395
https://github.com/llaske/sugarizer/pull/1316
https://github.com/llaske/sugarizer/pull/1312
https://github.com/llaske/sugarizer/pull/1308
https://github.com/sugarlabs/www/issues/400#issuecomment-1454074091
https://github.com/llaske/sugarizer/pull/1296
https://github.com/search?q=author%3Arockharshitmaurya+org%3Asugarlabs+org%3Allaske&type=issues


6

About Project

What is the name of your project?
The name of my project is Sugarizer Word Puzzle and Chart activities.

Can you provide an overview of your project in 10-20 sentences,
including its purpose, target audience, and the technologies
involved?

Sugarizer Word Puzzle and Chart activities are a project that aims to create
interactive educational activitiy for children using the SugarLabs Learning
Platforms. The project could involve creating word puzzles template and charts
activity that are engaging and age-appropriate, designed to improve children's
vocabulary and critical thinking skills.

The project may be designed for young children in primary school who are just
starting to learn how to read and write.

Sugarizer is a versatile tool for students and teachers that works as both a mobile
application and a web application, offering users more options. With a wide variety
of activities, the goal is to promote interactive learning between students and
teachers within Sugarizer

Technologies:

JavaScript/HTML5 development.
Vue.js framework development.
React.jS framework development.
Sugarizer Core architecture.



7

Aim of Project:

The aim of your project is to develop new educational activities for children that
help them learn and practice concepts in a visual and interactive way. The project
goals are as follows:

1. Create a new template Word Puzzle for Exerciser activity that allows teachers
or anyone with access to generate custom word puzzles for their students.
The exercise generator will include various customization options such as
background image, fill characters, and showing the searched words.

2. Develop a Chart activity for children to enable them to learn about visual
representations of data such as pie chart, bar chart, vertical bar chart,
horizontal bar chart, and line chart.

3. Provide an interactive play area for students to practice the puzzles
generated by the exercise generator.

4. Improve children's learning experience by providing them with engaging
educational activities.

Overall, the project aims to provide children with an interactive learning
environment that helps them understand and retain complex concepts more easily.

Project Goals:

The goals are all aimed at achieving the overall aim of developing new
educational activities for children that help them learn and practice concepts in a
visual and interactive way.

● Develop a new Chart activity that includes pie chart, bar chart, vertical bar
chart, horizontal bar chart, and line chart.

● Create a new template Word Puzzle for Exerciser activity that allows
teachers or anyone with access to generate custom word puzzles for their
students.

● Provide an interactive play area for students to practice the puzzles
generated by the exercise generator.

● Improve children's learning experience by providing them with engaging
educational activities.



8

Word Puzzle Template

Introduction:

This project aims to provide teachers or anyone with access to an exercise
generator that allows them to create custom word puzzles for their
students. The exercise generator includes several customization options,
such as a background image, fill characters, and showing searched words.
Once the puzzle is generated, it will be added to the play exercise screen
for students to complete. The project will be built using React.js,
HTML/CSS, JavaScript, and react-redux.

Deliverables:

1. Create a new "Word Puzzle" template card in the Exerciser activity.
2. Allow teachers or anyone with access to create custom word puzzle for

their students.
3. Provide options for customization such as background image, fill

characters, and showing the searched words.
4. Ability to add words for the word puzzle.
5. Allow editing and removal of the word puzzle by the creator.
6. Implement the ability for students to play the word puzzle.
7. Display evaluation details, such as score, time, and details

(number of questions attempted).

I have meticulously listed all the essential steps required to create a fully
functional word puzzle template and have also illustrated each step and
feature of the project in the diagram below.



9

Workflow of new exercise template:

Implementation

➢ Add Exercise (Builders/WordPuzzleForm.js):

The WordPuzzleForm.js form for the word puzzle exercise will allow users to
set various options before they begin adding questions, such as

➢ selecting a banner image,
➢ setting a background image for the word puzzle,
➢ toggling the display of the searched words(show/hide),
➢ Fill custom character for the unused cells.

Once users have configured their exercise to their liking, they can start adding



10

content to the exercise, such as text, images, sounds, speech, or videos. After
adding the desired content, users can complete the exercise setup process and
submit the form. The completed exercise will then be added to the activity's
homepage along with other exercises.

Below are some methods that will be available for configuring the word
puzzle exercise:

changeBannerImage():

This feature enables the user who is configuring the puzzle to set the banner
image for the exercise.
Following code snippets are provided as an example only, and the actual implementation may differ.

changeCrosswordBackgroundImage():

This method will help the user to set a background image for the word puzzle.

viewBackgroundImage():

This method displays the current background image of the word puzzle



11

ShowSearchedWord():

This function provides a checkbox that toggles the display of the searched words
in the word puzzle.

FillCharacterAtUnusedPlace():

This function provides a form for setting the fill character that will be used for
unused cells in the word puzzle.



12

➢ Word Puzzle Form will look like this:

When the user clicks on the "launch exercise" button, they will be taken to next
screen, On this screen, where they can add words, clues, and other content to
build their puzzle. Once they have finished creating their puzzle, they can save it to
be used later or start solving it right away.

➢ The Next Screen will look like this:



13

On the following screen, the user or teacher can add previously created questions
with their previously configured settings. They have the option to select various
media types to form the question, including :

1. Text
2. Images
3. Sounds
4. Speech
5. Videos

Depending on the chosen media type, a corresponding input field will open for
the user to input their question.

The purpose of offering a variety of media types is to improve the visual appeal
and engagement for children using the platform. For example, if an image is
selected as the media type and an image of an elephant is uploaded, the players
will see the image and need to locate the word "elephant" in the word puzzle.

➢ Here is an Example Screen if the user selects text as input:



14

If the user selects "text" as the input media type as above shown, the screen will
display an input field where they can type in their question-word. Once the
“question word” is entered, the user can proceed to the next question in their
puzzle.

After the user has added a sufficient number of questions to their exercise, they
can finish creating the exercise. Once the exercise is completed, it will be
automatically added to the home page of the exerciser activity and will be ready to
play. From the home page, other users or students can access and engage with
the.

➢ Play Exercise (Players/WordPuzzlePlayer.js):

exerciseWordPuzzlePlayer.js file is intended to handle the functionality related to playing
the word puzzle exercise once it has been created. Here I am going to explain some of the
possible functions for the WordPuzzlePlayer.js file:

Here are some of the possible states of this WordPuzzlePlayer file going to hold:

createEmptyGrid:

The createEmptyGrid function creates an empty 2D array to hold the words for the
word search puzzle. It calculates the maximum length of the words in the input array,
and then creates the empty grid with dimensions of maxLength by words.length. The
function returns the empty grid array.



15

fillGridWithWords:

This function fills the empty 2D array created by the createEmptyGrid function with the
input words for the word search puzzle. It takes in two arguments: the empty grid array and an
array of words to place in the grid. Overall, the fillGridWithWords function is responsible for
placing the words in the grid in a random and non-overlapping way.

tryPlaceWord:

This code defines a React component called TryPlaceWord. The component takes in five props:
grid, word, row, col, and direction. These props are used to calculate the ending row and
column of the word based on its direction and to check if the word can fit in the grid.

If the word doesn't fit in the grid, the component returns false. If the word does fit in the
grid, the component checks if the cells in the grid are available for each letter in the word. If any



16

of the cells are already occupied by a different letter, the component returns false. If all the
cells are available, the component places the word in the grid by iterating through each letter
of the word and assigning it to the corresponding cell in the grid. The component returns true if
the word was successfully placed in the grid.

generatePuzzle:

This function generates a word search puzzle. It takes an array of words as its parameter and
performs the following steps:

1. It converts all the words to uppercase and sorts them alphabetically.
2. It sets the words in the state using the setWords function.
3. It creates an empty grid using the createEmptyGrid function, which takes the words as its

parameter and returns a two-dimensional array representing the grid.
4. It fills the grid with the words using the fillGridWithWords function, which takes the grid

and words as its parameters and randomly places the words in the grid in different
directions.

5. It fills the remaining cells of the grid with random letters using the
fillGridWithRandomLetters function, which takes the grid as its parameter and replaces
any empty cells with random letters.

6. It sets the grid in the state using the setGrid function.

Overall, this function generates a complete word search puzzle by taking the input words,
creating a grid to fit all the words, filling the grid with the words in random directions, and then
filling the remaining cells with random letters.



17

➢ Here is an example of what the word puzzle exercise may look like once it has been
added to the home screen:



18

On the home screen, the exercise will be displayed with its title,best score,no of
questions, and a thumbnail image. Users or students can click on the exercise to start
playing and solving the puzzle.

On the word puzzle card displayed on the home screen, there are several different
functionalities that users can perform. These include:

➢ Play: This button allows users to start playing the word puzzle exercise.

➢ Edit Exercise: Users can edit the exercise and modify its content or settings by
clicking on this button.

➢ Remove Exercise: This button enables users to delete the exercise from the home
screen if desired.

Here are some visuals of the exercise in play mode:
Screen 1:



19

Screen 2:

In the Above Screen 2 displays a visual representation of the word puzzle
showcasing how it will appear with various configurations. There are three
types of displays:

➢ Type 1: When the show searched word option is selected on the
configurations screen.

➢ Type 2: When the show searched word option is not selected on the
configurations screen.

➢ Type 3: When the user has selected a background image for the
word puzzle on configurations screen, which will be reflected in the
puzzle's appearance.

There will 3 Options for evaluation of the game result:

➢ Score:
○ The user will have the ability to view their score in comparison to

the highest score, and also visualize their score using a bar chart.
➢ Time:

○ The game score evaluation feature I've implemented allows users to
easily visualize their performance over time, making it easier to
track progress and identify areas for improvement.



20

➢ Details:
○ This Score Evaluation feature provides users with additional

information about their score and performance in the game.
Specifically, it shows how many words the user was able to find in
the puzzle and how many they were not able to find. This can help
the user to identify.

Edit Exercise:

This feature will become available to the user in the play menu when they open the
exercise in edit mode from the top bar. Once in the edit screen, the user can view all
the previous configurations and questions they have set for the exercise. They can then
modify any setting they have previously set and test the exercise to ensure that
everything is working properly. If everything works as expected, the user can finish
editing the exercise.

Visual Screen From Edit mode of puzzle Exercise:



21

Additional Features:

1. Word Puzzle containing weekdays and months:

● The game can include a set of words related to weekdays and months, such
as Monday, Tuesday, January, February, etc.

● This can be a fun and educational way for children to learn and memorize
the names of the days and months of the year.

2. Word Puzzle containing animal or color name:

● Another set of words that can be included in the game are names of
animals or colors, such as cat, dog, green, blue, etc.

● This can provide a fun way for children to learn and memorize the names of
different animals and colors.

Conclusion:

With the addition of these extra features, the Word Puzzle game can become
more diverse and engaging for children. By including sets of words related to different
themes, such as weekdays and months or animals and colors, the game can offer a fun
and educational way for children to learn and improve their vocabulary. These features
can enhance the overall experience of the game and make it more appealing for children
to play.

Chart Activity

Introduction:

The Sugar Labs organization has a project called Sugarizer, which aims to provide
a free/libre and open-source learning platform for children. One of the key features of



22

Sugarizer is its collection of activities that provide interactive learning experiences. One
such activity is the Chart Activity, which is currently only available in Sugar OS and written
in Python. The purpose of this proposal is to convert the Chart Activity into a Vue.js
component so that it can be used in Sugarizer applications.

Objective:

The main objective of this project is to convert the existing Chart Activity into a reusable
Vue.js component that can be easily integrated into Sugarizer applications. The specific
goals of the project are:

● Convert the existing Python code to JavaScript and Vue.js syntax
● Implement the chart rendering functionality using the Vue Chart.js library
● Allow the Chart component to be easily customized and configured by passing

props to the component
● Implement the ability to share activities with other users on the network so that

they can explore activities together
● Implement the ability to export the chart as an image

Scope:

The scope of this project is limited to converting the Chart Activity into a Vue.js
component using the Vue Chart.js library and implementing the two additional features.
The conversion process will involve rewriting the existing Python code into JavaScript and
Vue.js syntax and implementing the chart rendering functionality using the Vue Chart.js
library. The Chart component will be designed to be easily customizable and
configurable by passing props to the component. The two additional features will allow
users to share activities with other users on the network and export charts as images.

Methodology:

The project will follow an iterative development process, with each iteration
consisting of the following steps:

Design: In this phase, we will gather the requirements for the Chart component and the
two additional features along with other existing features, and design a high-level
architecture for the component. This will include deciding on the props to be passed to
the component, the expected behavior of the component, and the implementation
details for the two additional features.

Implementation: In this phase, we will implement the Chart component in Vue.js using
the Vue Chart.js library. We will also implement existing features along with the two
additional features, allowing users to share activities with other users on the network
and export charts as images. We will ensure that the Chart component is customizable
and configurable by passing props to the component.

Testing: In this phase, we will test the Chart component and the two additional features
to ensure that they work as expected and are compatible with Sugarizer's requirements.
We will use automated testing frameworks like Jest and Cypress to test the component,



23

as well as manual testing to ensure that the component is intuitive and easy to use.

Feedback and Refinement: In this phase, we will gather feedback from users and
stakeholders, and use it to refine the Chart component and the two additional features.
We will iterate on the design, implementation, and testing phases as necessary to ensure
that the Chart component and the two additional features meet the needs of Sugarizer's
users.

Deliverables:

1. A fully-functional Chart Activity implemented using Vue.js and the
Vue-Chartjs library.

2. Features implemented to improve the functionality of the activity, including
adding and removing data, changing the graph title, changing the type of
graph, configuring graph settings, formatting text, sharing activity, exporting
chart as an image, and full-screen mode.

3. Regular progress reports and communication with the Sugar Labs
community.

Before Starting the plan, I would like to express my gratitude to our project mentor,
Mr. Lionel Laské, for his invaluable tutorial on building activities in Vue.js from scratch.
The tutorial helped me gain a better understanding of the code structure and how things
work in Sugarizer.

Plan Strategy:

Assuming that I have set up the basic template provided by Sugarizer to create a
new Vue activity, I plan to implement the Chart Activity by following these steps:

1. Create a layout for the activity that includes a toolbar, a chart area, and a
data list area. The toolbar will have buttons for adding data, removing data,
changing the chart type, accessing settings, entering full-screen mode,
exporting the chart as an image, and saving the state of the activity.

2. Implement a method in Vue.js to push new data to the chart data array
when the user clicks the add data button. When the user clicks the remove
data button, another method will be used to splice the selected data from
the array.

3. Add functionality to the chart type button to allow the user to switch
between Vertical Bars, Horizontal Bars, Lines, and Pie chart types. When a
new chart type is selected, the chart data will be updated accordingly.

4. Implement a settings button that opens a toolbar with options to change
the chart title, horizontal and vertical labels and color scheme. This will be
achieved using an internal library provided by Sugarizer, which includes files
such as exportPalette.js, fontPalette.js,
ForegroundColorPalette.js, formatTextPalette.js, and sizePalette.js.

https://github.com/llaske
https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/tutorial.md


24

5. Allow the user to format text, including changing font style,
increasing/decreasing font size, and changing text color.

6. Enable the user to export the chart as an image, PDF, or other file formats.
This will be done using the libraries like html2canvas and jspdf Vue.js
toDataURLmethod.

7. Implement a method to save the state of the activity, so the user can pick
up where they left off if they close and reopen the activity. This can be
achieved using the built-in localStorage object in Vue.js to store the state
of the chart data array and other activity variables.

8. Lastly, add a feature to allow the user to share the activity with others on
the network. This can be done using Sugarizer's built-in networking
capabilities to allow other users to collaborate on the same chart activity.

I believe that implementing these features will result in a user-friendly and
comprehensive Chart Activity that will provide an excellent user experience for
Sugarizer users.

Let's Explore Each Implementation Step in Detail:

Rendering Chart:

To display a chart on the screen, we will be using the external library called
vue-chart.js. Vue.js uses Chart.js and abstracts the basic logic while
exposing the Chart.js object to provide maximum flexibility such as changing the
chart color to the same as the user theme color of sugarizer using
chartOptions parameter.

Here is a simple code snippet using vue-chart.js that implements a bar chart
showing sales data.



25

Digram of ToolBar with features:

Add Data :
The "Add data" feature allows users to add data to the chart by clicking on a “ ” button.
To implement this feature, we will create a method in Vue.js that will push the new data
to the existing chart data array.
The method will be triggered by an event when the user clicks on the "+" button. The
method will take the input values from the user, such as the label and data, and push
them to the chart data array. Once the data is added, the chart will be re-rendered to
display the updated chart with the new data.



26

Remove Data :

The "Remove Data" feature allows users to remove data from the chart by selecting the
data from a list of data points rendered beside the chart. The selected data will be
highlighted, and the user can remove the data by clicking on a button. To implement
this feature, we will create a method in Vue.js that will splice the selected data from
the existing chart data array.

The method will be triggered by an event when the user clicks on the "-" button. The
method will take the selected data point from the list of data points, and splice it from
the chart data array. Once the data is removed, the chart will be re-rendered to display
the updated chart without the removed data.

Change Graph Type:

Currently, for the chart visualization, the toolbar provides users with four distinct
options to choose from when visualizing their data: vertical bars, horizontal bars, lines,
and pie charts. By utilizing a Vue.js method, users can easily switch between these
different chart types, Users can change the type of the charts (Vertical Bars, Horizontal
Bars, Lines, Pie). This feature will be implemented using a method in Vue.js to update the
chart type.



27

Config Label :

The "Chart Settings" feature in the chart activity allows users to customize their chart by
changing the labels of the horizontal and vertical axes. This feature is important because
it allows users to accurately represent their data by labeling the axes correctly. Users can
also change the color of the labels to make them stand out or match a certain theme. To
implement this feature, Vue.js components and props will be used to ensure that the
changes made by the user are reflected in the chart in real time. By giving users the
ability to customize their chart, they will have more control over how their data is
presented and can make more informed decisions based on the insights they gain from
the chart.

Text Formatting:

The formatting option includes various text formatting tools that users can use to
customize the appearance of text in the chart activity. These tools include changing the
color of the text, increasing or decreasing the size of the text, and changing the font style
to one of the pre-defined font styles available in the application. Users can easily select
the desired text formatting tool from the formatting toolbar and apply it to the text in
the chart activity. This feature will be implemented using the internal library provided by
Sugarizer, which includes various files such as fontPalette.js,
ForegroundColorPalette.js, formatTextPalette.js and sizePalette.js.With the
help of these files, we will be able to implement text formatting tools in the chart activity.



28

Export Chart As

This feature enables users to export the current chart as an image or a PDF and
save it to the Journal. To accomplish this, we will use Sugarizer's internal component,
SugarJournal. We will add the js/components/SugarJournal.js file to our
index.html to include SugarJournal. Moreover, we will need to include a custom
component, <sugar-journal>, in our Vue template to prepare our application for
saving data to the Journal. To export the chart as an image, we will need two external
libraries, namely html2canvas and jspdf. Below is an implementation example of how
we can export the chart as an image or a PDF.

Export Chart As Image :

To export the current chart as an image, we will use the html2canvas library. First,
we need to include the library in our index.html file. Then, we can add a button or an
option in our toolbar for exporting the chart.
we can use the html2canvas library to capture the current chart as a canvas. We can
then convert this canvas into a data URL using the toDataURL()method. This data URL
can be used to display the image in a new window or save it to the Journal using the
SugarJournal component as explained earlier.

Here's an example code snippet for exporting the chart as an image:



29

Export Chart As PDF :

exporting as PDF is a useful feature that allows users to save the current chart as a PDF
document. To implement this feature, we can use an external library called jsPDF, which
allows us to generate PDF documents in the browser.

Here's how we can implement the export as PDF feature in our chart application:

1. First, we need to include the jsPDF library in our project by adding a script tag to
our index.html file.

2. Next, we need to create a function that will generate the PDF document. We can
use the jsPDF library's addImage method to add the chart image to the PDF
document. We can also use the setFont and text methods to add any additional
text or information to the PDF.

3. We can then create a button or link in our chart application's UI that, when clicked,
will call the PDF export function.

4. Finally, we can use the Sugarizer Journal component to save the PDF document to
the Journal for future reference.

Overall, the export as PDF feature is a valuable addition to our chart application.

Share Activity :

To enable the Share Activity feature in a chart activity, a palette can be
included. The term "palette" refers to a pop-up menu in the toolbar that displays



30

items inside, often other buttons. Sugar-Web exposes a Palette library and, more
precisely, a PresencePalette, which provides real-time communication
between clients using the publish/subscribe pattern.

To implement this feature, first, include the following code in your index.html file:

Rest, I'll follow this beautiful article on Handle multi-user with presence provided
by our mentor

Activity Tour :

The Activity UI tutorial is a series of dialog boxes that guide users through the
meaning of different UI elements by highlighting them. To implement this feature
in our activity, we first need to include the Intro.js external library in our project.
Intro.js is a lightweight JavaScript library that allows us to create powerful
step-by-step customer onboarding tours. Additionally, the sugar-tutorial
component is available, which not only handles the displaying of steps but also
has the Sugar UI built-in, so we don't have to worry about setting up Bootstrap
tour or styling. This is a convenient and time-saving solution for our activity."

Implementing State Saving in the Application:

In this implementation, we can save the data entered by the user in
Sugar-Journal, which is a component of Sugarizer. This helps to manage the
state of an activity. The idea is that every time we exit the activity, we will store
the context of the current activity in the datastore. The datastore is the place
where Sugar stores the Journal, and Sugar-Web automatically initializes it
during activity setup.

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step6.md


31

To store the context, we define a context object and add the necessary data to
it, such as the chart data in this case. Then, we pass this object to the
saveData()method of Sugar-Journal to save the state of the activity.

Here's the code snippet:

This code should be called at the end of the activity, which we can do by catching
the click on the Stop button. We create a new method in js/activity.js called
onStop() to handle this, which includes the above code to save the state. Then, we
add an event listener to the Stop button in index.html to call this method when
the button is clicked:

the rest of the process is described here.

Dependencies:
● Vue-chartjs: Vue-chartjs is an external library used to render charts in

Vue.js applications. It provides an abstraction layer over Chart.js, which
allows for greater flexibility and customization.

● Html2canvas: Html2canvas is an external library used to capture
screenshots of web pages in a canvas element. It allows for easy exporting
of web pages as images or PDFs.

● Jspdf: Jspdf is an external library used to generate PDFs from HTML
content. It provides a simple and easy-to-use interface for creating and
customizing PDF documents.

https://github.com/llaske/sugarizer/blob/dev/docs/tutorial/VueJS/step4.md


32

What is the timeline for the development of your project? The Summer
of Code work period is frommid-May to mid-August; tell us what you
will be working on each week. (As the summer goes on, you and your
mentor will adjust your schedule, but it's good to have a plan at the
beginning so you have an idea of where you're headed.) Note that you
should probably plan to have something "working and 90% done" by
themidterm evaluation (end of June); the last steps always take longer
than you think, and we will consider canceling projects which are not
mostly working by then.

Timeline

Time Period Plan

Week one/two ➢ Explore more about sugarizer and technologies in
which sugarizer activities are build.

May 12 - May 28,
2023,

➢ End-Semester Examination
➢ Discuss Chart Activity and word-puzzle template

strategy with the mentor(s)
➢ Get to know about mentor(s) better.
➢ Ask about the actual design and grab more

about the features by mentor(s).
➢ Learn more about the internal working ofsugarizer

from the mentor(s)
➢ Create the initial setup and set up the project in

the GitHub repository.

Coding Period
May 29, 2023 - August 28, 2023,

Week One ➢ Setting up the development environment in
sugarizer for implementing chart activity, then
build some UI



33

Week Two ➢ Continue Adding features in the toolbar of the
chart activity using the sugar-toolbar
component, and working on chart container UI.

Week Three ➢ Adding functionality in the toolbar features like
adding and removing data to the list which will be
rendered beside the chart

➢ resolving errors and bugs.

Week Four ➢ Will be working on the rending chart using the list
data and setting up the level and its color based on
the user team color,

➢ Also Will be building all 4 chart types and mapping
the data model to mean how it will be interpreted
internally.

Week Five ➢ Implementing the text formatting features in the
toolbar with full functionality

➢ Implementing features like customizing the label
and color of the charts using the color palette

Week Six Mid Evaluation (July 10, 2023 - July 14, 2023)
➢ Implementing features to export chart as

any selected media types.
➢ Fixing errors and cleaning up the code by

removing the redundant lines & logic

Week Seven ➢ Implementing feature share activity with other users
and also implementing, saving the state of the
application to not to lost data when leaving

Week Eight ➢ Start working on word puzzle template exerciser
activity, build UI for the for a form of word puzzle
template

➢ Also adding functionality in the form of word puzzle.



34

Week Nine ➢ Working on the UI for the exercise in the play mode,
➢ Also implementing the logical part for the word puzzle,

and, fixing errors and bugs till current development

Week Ten ➢ Working on the UI Section of the Score evaluation
section.

➢ Adding functionality to the score evaluation mode.

Week Eleven ➢ Working on the UI for the word puzzle in edit mode, also
implementing the functionality in the adit mode

➢ Also Implementing test exercise mode of the puzzle.

Week Twelve ● Test and resolve bugs then clean up the code.

● Submit final deliverables.
● Create a summary and project report

Coding Period Ends

Convince us, in 5-15 sentences, that you will be able to successfully
complete your project in the timeline you have described. This is
usually where people describe their past experiences, credentials,
prior projects, schoolwork, and that sort of thing, but be creative.
Link to prior work or other resources as relevant.

I am not just a developer, I am also a coding enthusiast who loves to implement
new ideas. I have been developing web applications for a long time now, with a
tech stack focused on MERN, and I have a solid working knowledge of node.js ,
react.js and vue.js . I have previous experience working as a web developer for a
startup called "Doubtfree Learning," where I was responsible for developing their
e-commerce platform for gifts. In addition to my professional experience, I am also
ranked in the top 6% of competitive coders on LeetCode globally, which has
helped me develop my problem-solving and algorithmic thinking skills. I am
confident that my technical skills, passion for coding, and past work experience will

https://leetcode.com/HarshitMaurya/


35

enable me to successfully complete my project within the given timeline

Also I completed both the Sugarizer Vanilla Javascript activity development
tutorial and the Sugarizer Vue.js activity development tutorial. This helps me
understand how the Sugarizer core works and how the activity is implemented.
Following is the link to my repository of the implemented tutorials.

● https://github.com/rockharshitmaurya/VueJS-Pawn.activity
● https://github.com/rockharshitmaurya/VanillaJS-Pawn.activity

Activity Tutorial Video Link :
https://discord.com/channels/1078051575580336249/1078054265517506

681/1088168362137358477

These are some of the major web-based projects that I have built:

E-Commerce Plateform: An e-commerce platform integrated with payment
gateway made with React.js, Tailwind Css, Redux, Stripe, Email Js, Material Ui
for the frontend and Node Js, Express, MongoDB, and JWT for the backend. It
also has an Admin Panel to edit and add products on the store. social media
platform just like Instagram, which connects people on the web. Built on
MERN stack.

Link: https://github.com/rockharshitmaurya/e-commerce-application
Deployed Link: https://shopspree08.netlify.app/
Admin Panel Deployed Link: https://admin-shopspree.netlify.app/

https://github.com/rockharshitmaurya/VueJS-Pawn.activity
https://github.com/rockharshitmaurya/VanillaJS-Pawn.activity
https://discord.com/channels/1078051575580336249/1078054265517506681/1088168362137358477
https://discord.com/channels/1078051575580336249/1078054265517506681/1088168362137358477
https://github.com/rockharshitmaurya/e-commerce-application
https://shopspree08.netlify.app/
https://admin-shopspree.netlify.app/


36

Netflix-Clone : This project is a Netflix UI clone using the MERN stack, enabling
users to browse and search for movies and TV shows, view trailers and summaries,
and create watchlists..

Link: https://github.com/rockharshitmaurya/netflix-clone

https://github.com/rockharshitmaurya/netflix-clone


37

You and Community

What will you do if you get stuck on your project and your mentor isn't
around?
In such a situation, I will first try to solve the problem myself by searching on the
web for suitable solutions. If this doesn't work, then I will contact other developers
on Element on the Sugar channel. And I experienced and noticed that the
members
of the community are quite responsive and I believe that they will help me out.
Also, I have some contact with other senior developers in college who have good
development experience to help me out. Also, I have contacts with some
experienced developers in the industry that I made during my past internship who
can help me out.



38

How do you propose you will be keeping the community informed of
your progress and any problems or questions you might have over the
course of the project?
I plan to keep a writing blog about the project where I will post updates on
progress, obstacles faced, and their solutions., I will make regular requests to pull
on the sugarizer, so that anyone at org can watch my progress. For problems or
questions, I will use Element (IRC) )as I have been using it for a long time during the
suggestion and keep in touch with my advisors and text them in Element.

FAQs

●Will, you have any other time commitments, such as school work,

another job, planned vacation, etc, during the duration of the program?

I have my end-semester exams from 20th May - to 30th May 2023.

●What will be your typical working hours and how many hours per week

will you dedicate to this project?

I will be working 6 hours on weekdays from 9 am to 3 pm (IST) and 6 - 7

hours on Saturday from 9 am - 4 pm (IST). In total, ~50 hours per week.

---END OF PROPOSAL---


