
GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

GSoC’22 Project Proposal
Sugar Labs: Sugarizer Vue.js UI

Saumya Kushwaha

Basic Details

Full Name:
Saumya Kushwaha

Emails and Contacts:
Primary email: saumyakus@gmail.com,
Secondary Email: saumya.kushwaha.cd.cse20@itbhu.ac.in
Github: S-kus
Matrix Username: Saumya Kushwaha
LinkedIn Profile: Saumya Kushwaha
Phone: (+91) 7380969660
Resume: Resume link

Your First Language:
My first language is Hindi but I am proficient in speaking, reading, writing, and
understanding English.

Location and Timezone:
Location: Varanasi, Uttar Pradesh, India
Timezone: Indian Standard Time (UTC+5:30)

Communication:
The time I will be comfortable working with:

● UTC 04:00 - UTC 07:00 (IST 09:30 - IST 12:30)
● UTC 08:30 - UTC 14:00 (IST 14:00 - IST 19:30)
● UTC 16:00 - UTC 19:30 (IST 21:30 - IST 01:00)

1

mailto:saumyakus@gmail.com
mailto:saumya.kushwaha.cd.cse20@itbhu.ac.in
https://github.com/S-kus
https://www.linkedin.com/in/saumya-kushwaha-00ba101ba/
https://drive.google.com/file/d/173NhBk5A7md9hKoqzsQlxm46VKJmadV3/view?usp=sharing

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

I can start my day 2 hours early or late if it helps to communicate with other
developers and mentors, and I will be reachable anytime through my Mobile No. and
Email.

Education Details

I am a Computer Science and Engineering undergraduate student at the Indian
Institute of Technology Varanasi (BHU) pursuing a Bachelor of Technology in my
second year. I was introduced to the world of programming and software
development in my first year. Since then, I have explored various fields such as Web
Development, Data Structures, Algorithms, Computer Architecture, and Operating
Systems. I also have been contributing to open-source since my 2nd year. For most
of my programming journey, I have worked primarily with Web-based technologies
and C/C++, Python programs, and I have recently been learning Machine Learning
as well.

Share links, if any, of your previous work on open source
projects

I got introduced to open-source projects and community in the second year of my
undergraduate studies. Since then I kept myself involved in developing and learning
about software and technologies.

I have been contributing to Sugar Labs for the past 4 months. During this time, I have
contributed to many repositories and fixed documentation, bugs, UI changes,
enhancements, and updated versions and packages. These past four months have
been a great learning experience. These are my contributions to Sugar Labs:

Pull request
link

Description Status

#347 Ported the official website from bootstrap version
3 to 4

Merged

#344 Updated SOAS hyperlink and added Trisquel Merged

2

https://github.com/sugarlabs/www-sugarlabs/pull/347
https://github.com/sugarlabs/www-sugarlabs/pull/344

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

#3018 Added scrollbar to block-window in musicblocks Merged

#3016 Updated "help window carousel" with the title of
blocks

Merged

#3009 Enhancing "take a tour" and "usage-guide" modal Merged

#997 Vanilla and Vue.js activity development Tutorial
Improvement

Merged

#104 Fixed the bug related to arrow functionality in
Exerciser Activity

Merged

#102 Improved the 'buttons' for exercises Merged

#8 Created readme.md Merged

#472 Added scrollbar to block-window in turtle blocks Merged

#470 Corrected "mouse icon SVG" to "turtle icon SVG" Merged

#11 Updated readme Merged

#350 Enhanced Profiles Page Merged

#371 Fixed mySlides error in console Merged

#361 Updated 'Sugarlabs' to 'Sugar Labs' Merged

#356 Removed jsquery.nicescroll plugin and added
custom styles

Merged

#355 Removed unused 'modernizr' plugin and fixed
related errors

Merged

#1056 Corrected overlapping of back-button in some
activities

Open

I have made over 37 commits till now in Sugar Labs. All of these merged commits
and issues can be found here.
Out of these contributions in Sugar Labs, the most significant one is Porting the
official website from Bootstrap 3 to Bootstrap version 4. In this pull request, I fixed the

3

https://github.com/sugarlabs/musicblocks/pull/3018
https://github.com/sugarlabs/musicblocks/pull/3016
https://github.com/sugarlabs/musicblocks/pull/3009
https://github.com/llaske/sugarizer/pull/997
https://github.com/llaske/ExerciserReact/pull/104
https://github.com/llaske/ExerciserReact/pull/102
https://github.com/sugarlabs/yupana/pull/8
https://github.com/sugarlabs/turtleblocksjs/pull/472
https://github.com/sugarlabs/turtleblocksjs/pull/470
https://github.com/sugarlabs/yupana/pull/11
https://github.com/sugarlabs/www-sugarlabs/pull/350
https://github.com/sugarlabs/www-sugarlabs/pull/371
https://github.com/sugarlabs/www-sugarlabs/pull/361
https://github.com/sugarlabs/www-sugarlabs/pull/356
https://github.com/sugarlabs/www-sugarlabs/pull/355
https://github.com/llaske/sugarizer/pull/1056
https://github.com/search?q=author%3AS-kus+org%3Asugarlabs+org%3Allaske&type=Commits
https://github.com/sugarlabs/www-sugarlabs/pull/347
https://github.com/sugarlabs/www-sugarlabs/pull/347

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

broken UI elements and also corrected the div alignment problem. This problem
happened because of the flexbox class in the bootstrap version 4. This porting will be
helpful for migration to the latest version because in bootstrap version 4 flexbox is
introduced for the first time and hence significant changes were done. In this task, I
have added 13,061 and removed 228 lines.

I worked on some of my personal projects for learning purposes and I have also
participated in HactoberFest’21. Other than this I also contributed to many
open-source projects. Following are some of my open-source contributions to
different organizations.

● https://github.com/LesFruitsDefendus/saskatoon-ng/pull/179
● https://github.com/LesFruitsDefendus/saskatoon-ng/pull/187
● https://github.com/COPS-IITBHU/sdg-site/pull/
● https://github.com/COPS-IITBHU/sdg-site/pull/37
● https://github.com/COPS-IITBHU/cops-django-youtube/pull/9

Details of my other contributions can be found on my Github profile here.

Convince us that you will be a good fit for this project, by
sharing links to your contribution to Sugar Labs

I am an active contributor of Sugar Labs since Dec 2021 with over 37 commits
merged in various repositories. Spending this much time with the codebase helped
me to understand it in a better way.

● Commits: 37 (13,304++, 669--)
● Issues: 13 (10 closed, 3 open)
● Pull Request: (17 closed, 1 open)

I am applying to Sugar Labs for Google Summer of Code 2022, because of the
community relations and the work carried out by this organization. Here everyone
discusses and develops as a team and everyone’s opinion matters. It really makes
you feel at the peak when you know that your work is going to contribute to the social
cause and will impact society in a positive manner.

Prerequisites for Project:

4

https://github.com/LesFruitsDefendus/saskatoon-ng/pull/179
https://github.com/LesFruitsDefendus/saskatoon-ng/pull/187
https://github.com/COPS-IITBHU/sdg-site/pull/5
https://github.com/COPS-IITBHU/sdg-site/pull/37
https://github.com/COPS-IITBHU/cops-django-youtube/pull/9
https://github.com/S-kus
https://github.com/search?q=author%3AS-kus+org%3Asugarlabs+org%3Allaske&type=Commits

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

As given in Idealist. I already have experience in HTML5, Javascript, and Vue.js
framework development. Other than this I am already familiar with the Sugarizer
codebase and have merged commits to the repository.

I am a full-stack MEVN developer. I have already worked on many projects in the
Vue.js framework and also HTML5/Javascript. Following are some of my major
projects related to the Vue.js framework:

● Project Labz
Project Labz is a website for managing and sharing projects. In this, a user can
make a particular type of project list (exa. ML, Dev, DSA related) and can add,
edit and delete projects from the Project List made by them.
Technologies Used: Vue3 framework, CSS, HTML, Javascript, Firebase for
database and authentication functionality.

● SDG-site
Being part of the Club Of ProgrammerS (COPS) IITBHU, I contributed to the
official website of its Software Development Group. Contributed to making the
Official website SEO-optimized and user-accessible by adding animation and
improving UI.
Technologies Used: Vue/Nuxt.js framework, SCSS, Javascript.

● Technex’22 Website
Technex is Techno-management Fest organized by IIT BHU, India. Being a part
of its Tech Team, I was responsible for making the official website. Added the
events page and created cards from scratch.
Technologies Used: Vue/Nuxt.js framework for frontend, Django Rest
Framework in the backend, and firebase for storing data as technologies.

I have been doing web development for the last 1.5 years. This is not an exhaustive
list of all the projects. I have also participated in “The Digital Alpha's SEC Filing
Analyzer for SaaS Companies” competition for the UI team at Inter IIT Tech Meet. My
other project work can be found on my Github profile here.

I have already contributed to the Sugarizer project. These are some of my merged
pull requests related to Sugarizer and its activities:

5

https://github.com/S-kus/Project-Labz
https://github.com/COPS-IITBHU/sdg-site
https://technex.co.in/
https://interiit-tech.org/
https://github.com/S-kus

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

● https://github.com/llaske/ExerciserReact/pull/102 (merged)
Improved the 'buttons' UI of exercises

● https://github.com/llaske/ExerciserReact/pull/104 (merged)
Fixes the bug related to toggle arrow in toolbar

● https://github.com/llaske/sugarizer/pull/997 (merged)
Vanilla and Vue.js activity development Tutorial Improvement

● https://github.com/llaske/sugarizer/pull/1056 (open)
Fixes the bug of back-button overlapping in Tangram and Curriculum activity

I completed both the Sugarizer Vanilla Javascript activity development tutorial and
the Sugarizer Vue.js activity development tutorial. This helps me understand how
the Sugarizer core works and how the activity is implemented. Following is the link to
my repository of the implemented tutorials.

● https://github.com/S-kus/Pawn-Activity-Vue.js
● https://github.com/S-kus/Pawn-Activity-VanillaJs

All of these make me familiar with the Sugarizer codebase and comfortable working
with Sugar Labs. It also helps me to understand how things actually work internally
and how various components are connected.

Project Details

What are you making?

The aim of this project is to create a framework of Vue.js UI components matching
the Sugar UI by replacing old EnyoJS, a deprecated framework initially developed
for WebOS. So, I will be:

● Rewriting the required listed (down below) files in Vue.js by replacing the
EnyoJs framework. (Required)

● I will be replacing the bootstrap tour library with the new one which will be
easy to use and maintain. It will also be matching with the current UI of the
tutorial popup. (Required)

● Implement basic UI components for exa: button, Entryfield, checkbox, etc in the
Vue.js framework. (Optional)

6

https://github.com/llaske/ExerciserReact/pull/102
https://github.com/llaske/ExerciserReact/pull/104
https://github.com/llaske/sugarizer/pull/997
https://github.com/llaske/sugarizer/pull/1056
https://github.com/S-kus/Pawn-Activity-Vue.js
https://github.com/S-kus/Pawn-Activity-VanillaJs

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

● Updating the “Sugarizer Vue.js activity development tutorial” in Vue3 from
Vue2. (Optional)

For this, I will be rewriting the following files of ‘js/’ directory:
● icon.js
● searchfield.js
● iconbutton.js
● popup.js
● selectbox.js
● palette.js
● password.js
● audio.js
● dialog.js,

and tutorial.js from the ‘lib/’ directory.
Other than this I will also be migrating Button, Entryfield, Checkbox etc and other
small files which are currently based on EnyoJs to the VueJs UI framework.

Details of these files and how the changes will be written are described below:

➢ Icon (js/icon.js):
It’s a class for Sugar icons based on the existing kind, enyo.control in
EnyoJs. It’s used to render SVG icons of buttons, activities, menus,
neighborhoods, etc. Now in VueJs:

○ For the template of icon component as it’s using mainly two
components in EnyoJs of namely: icon and disable. So there will be
two divs with the class of web-activity-icon and
web-activity-disable with icons ids.

○ These icons will be using two main functions that will come under
methods of VueJs for event v-on:mouseover and v-on:mouseleave

named: popupShowTimer and popupHideTimer which popup
itemlist component of popup.js i.e. description including activity link
for it.

○ For iOS and chrome android we can use v-on:touchstart and
v-on:touchend in place of mouseover/mouseleave.

7

https://vuejs.org/api/options-state.html#methods

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

○ As in EnyoJs, Rendered is called when a component is ready to be
placed into the DOM, So we can use the mounted() hook for touch
events and functions to get the colorized color of the icon.

○ For the 2nd div with a class of web-activity-disable, we will be
using methods and dynamic styling to change in the background
dynamically on the basis of whether div is active or not.

○ At last, this component will rely on direct SVG rendering. For this, we will
be using a similar method as in Xmas Lights activity. So, for this
firstly we will create a list of the CSS class to match all possible XO
buddy colors using custom properties --stroke-color and
--fill-color. Similar to this,

Now, We need to use the use tag and the xlink:href attribute. To
include an SVG file as if it was directly in the code.

○ Other than these we will be using other simple functions in methods like
checking if the cursor is inside the icon or not, also to check related to
Native things.

➢ IconButton (js/iconbutton.js):
It's a class for a Sugar button with an icon and a text under it and based on the
existing kind, enyo.control. Use in dialog screen, first screen, and for the
empty journal.

○ It’s using two components under the components of EnyoJs, namely:
icon and text and class of icon-button. Therefore, for the template
of this component, we will be using a div and a p inside the parent div.
The inside div will be using the template of the icon.js file for rendering
icons by importing it as a parent component, then for text a simple p

tag with the class icon-button-text.

8

https://vuejs.org/api/options-lifecycle.html#mounted

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

○ There will be a condition to check a language direction So that we can
easily add rtl-10 class if the l10n.language.direction=="rtl"

condition is true.
○ Then at last there is a function for colorizing the icon.

➢ Searchfield (js/searchfield.js):
A class for search with blur and focus feature of icons on the basis of
relevance and non-relevance. It’s also based on the existing kind,
enyo.control in EnyoJs.

○ For the template in VueJs, it’s using three divs. In which
- A magnifier icon with the class of search-field-iconsearch,

then a field for text-input of class search-field-input with
the features of onfocus and onblur to disable or inable the icon
as required.

- An icon of cancel button with a class of
search-field-iconcancel will show only when
inputString.length >0.

○ In the input text part, we will be using the Computed property of VueJs,
this will help to monitor input text so that we can modify icons
accordingly by adding and removing
search-field-border-nofocus and
search-field-border-focus classes as required i.e. relevant and
have similar sub-string as the title of activity or icons.

○ There will also be a click event listener function in methods for cancel
icon div, to set input string length back to 0.

➢ Popup (js/popup.js):
It's a class for a Sugar popup menu with a header and class
home-activity-popup and based on the existing kind, enyo.control.

○ Its template will basically consist of three parts:
- Firstly Header, with an icon on the left of fixed size and based on

already defined kind Sugar.Icon i.e. based on icon.js
component. It also has a click event listener for further actions.

9

https://vuejs.org/guide/essentials/computed.html

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

- Other than this there are two more parts in the header: name and
title tags on the right side with a class name of
popup-name-text and popup-title-text respectively.

- Then an optional component for list items. It has a class of
popup-items and is based on the kind named
Sugar.DesktopPopupListView. It’s also based on a scrollable
div in EnyoJs. So, there will be another child component in VueJs
for ListView. Its template is the list of items with icons and name
tags, with the class named item-list-item.

- Then a footer div of the name footerlist, which is currently
based on the kind named Sugar.DesktopPopupListView.

○ There is a timer function in methods for this popUp to appear and hide,
according to the cursor over the icon.

○ At last in the ListView child component, we add a loop for item in
itemList, So different works of that activity will appear on the popup
screen.

➢ Select box (js/selectbox.js):
A class for Sugar select box, which is based on enyo.control. Also currently
used only to select a language in language settings from the dialog. It have
the class named selectbox-border.

○ In the template, Inside a list of options, each item consists of two parts,
the first icon on the left and based on the already defined kind
Sugar.Icon i.e. based on icon.js component. The second is the text or
title of the option.

○ This component is based on Sugar.Popup i.e. popup.js file. It will also
contain a function in methods for click or touch event, to start a timer
and show the select box popup window.

○ It will receive an items array as props for rendering the options. The
selected item (or default selected item) will appear at the top by setting
its index to 0.

➢ Password (js/password.js):
This file contains two classes, Sugar.Password for password and
Sugar.Emoji for emojis code in EnyoJs. It is a class for password field in

10

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

Sugar and based on enyo.control. It is a specific type of box that takes
input as emojis of letters and numbers and contains a class named
password-class.

○ Currently, It contains 6 categories of emojis in which each of them has
10 emojis. At a particular time, a single category is displayed completely
on the password box. At the sidebar of this box, there are three
categories of emoji to go up or down to change the category. These
emojis arrays are currency stored in the constant.js file.

○ For the template of the box,
- First, there will be a parent div with a class named

password-line. Inside it, there will be three divs. First is a text
label of the class password-label. Then a div for inputting the
password also contains a cancel icon. At last, the set of 10 emojis
and a sidebar for the category of emojis.

- Each emoji block is based on a Sugar.Emoji kind in EnyoJs. So,
we will be creating a child component for it. Its template contains
the main div of class emoji, then inside it there will be two divs,
one for emoji-icon and another one for emoji-letter.

○ We will have functions in methods for clicking any category of the
sidebar. Pseudocode for categories selection:

11

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

Similarly, for the 1 and 2 index categories.
○ To update the 10 emoji Index that are shown, we will get the current

category starting index and update the 10 emojis from that index.
○ If the user is clicking emojis to input, then we will be using the function

emojiClicked() to get the emoji index and then convertToChar()

to store its value. Similarly, if the user inputs the value in the password
box using the keyboard, then by using convertToEmoji() we will
show the respective emoji in the password box.

○ In Sugar.Emoji VueJs component, we will be adding a function for
animation and flash effect by adding some CSS styles using a timer to
show the effect for a small duration when an emoji is clicked.

○ We will be using emoji values stored in data to update the index of
emoji to a new emoji.

➢ Palette (js/palette.js):
It’s a component for the Sugar palette based on enyo.control and used for
the filter option in the Journal screen toolbar.

○ For template, in parent div two classes namely palette-sugarizer
and palette-down will be added. Inside this for options of filter, there
will be two divs. Firstly an icon on the left which is based on the already
defined kind Sugar.Icon i.e. based on icon.js component and class
palette-icon. Secondly, a text with class palette-text.

○ Here I will also be adding a function in methods to get the active option
id and will update the palette tool icon dynamically to the active option
icon.

○ To open and hide the palette, we will be using dynamic CSS classes
palette-down and palette-up.

➢ Audio (js/audio.js):
A file for handling Sugarizer audio stuff and based on HTML5 audio element
and Cordova. Firstly, this file has a main class, namely HTML5.Audio based on
enyo.control and then a class using it also based on enyo.control,
namely Sugar.Audio in EnyoJs. For the Vue component:

○ In this, we are writing functions for handling volume buttons on Android
by listening to event volumeupbutton and volumedownbutton.

12

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

○ In the main component, the two main functions will be for the events: on
ending of sound and for updating the timestamp.

○ Smaller functions will also be there for loop, mute, pause etc, which will
be using inbuilt methods and functions for action.

○ For the play button on the web HTML5, audio can be used but for
Android and iOS, Cordova Media Constructor will be useful.

○ In the child component, there will be two main functions
broadcastEnd and broadcastUpdate for updating sound length. It
will be according to whether the sound has ended or update the new
timestamp if it has changed.

➢ Dialog (js/dialog.js):
This class is used for the settings dialog, named Sugar.DialogSettings

and based on enyo.Popup kind in EnyoJs. It has a class named
settings-dialog.

○ For the template of it in VueJs:
- It will contain two divs. First a toolbar in which a search bar

based on Sugar.SearchField kind i.e. searchfield.js file and a
cancel button for closing the dialog based on Button kind. Then
a second div which will have 8 components for different types of
settings namely: Aboutme, about my computer, aboutserver,
security, privacy, language, androidSettings, and
resetLauncher.

- androidSettings and resetLauncher are for android and
iOS.

○ In the main class i.e. settings-dialog, in mounted() hook we will
forbid the resizing of home when dialog popup is shown. By code:
app.noresize = true;

○ There will be a function in methods to filter the dialog components, i.e.
to show only those types of settings icons whose title is matching with
the search input string.

○ Other than this, there will be a click event listener at each type of
setting. On clicking their icon, that particular component popup dialog
will open.

○ For the About me dialog,

13

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://cordova.apache.org/docs/en/10.x/reference/cordova-plugin-media/#media

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

- In the template, firstly there will be the parent div of class
module-dialog. Then inside it, there will be two divs. Firstly for
the toolbar, there will be:

○ A module-language icon based on Sugar.Icon i.e. based
on icon.js component.

○ A title
○ A cancel button for closing the dialog
○ An OK button for saving the current settings and closing.

- Now in the second div, there will be two divs and a p. In the first
div, there will be 5 owner-icons. The first two i.e. psicon and
nsicon are used to set the current stroke color from the middle
owner-icon (which will be storing current changes) and different
fill color combinations. The last two pficon and nficon are
used to set the current fill color from the middle owner-icon and
different stroke color combinations. The second div is for
changing the current user name.

- To set the color combination of psicon, nsicon, pficon and
nficon, we get the middle or current fill and stroke color and
then get their combination randomly from the data. Here we will
be ensuring that for a particular owner-icon, the fill and stroke
color combination didn’t match.

- In the OK function in the methods, we will update the owner-icon
combination, save it and render it on the home screen.

- For updating the username, after getting the input, we will trim
the extra space by using inputUsername.trim() and then
save it.

○ My Security dialog is used to change the login image password, but
firstly, one has to enter the current password and then the new one, and
once it’s updated a final message for success will be received. This
dialog will be present in the main popup settings only if the user is
connected to the server.

- In the template inside the parent div of the class
module-dialog, there will be two divs. First for the toolbar,
which will be similar to others, and the other for content.

14

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

○ In content, there is an instruction message and then the
password box based on Sugar.Password i.e. password.js
file. Other than this, the spinner div for loading state,
buttons, and warning message in case of error will be
present.

- Now for the next button, after getting the password from the
input, we will set the loading to be true and meanwhile, we will
check from the server if the login password and the input
password are same or not. After that, we will set the loading to
be false and if they are same, then we will render the next screen
for changing the password else will show the warning text popup.

- For a new password, after input, we will set the loading to be true
then we will check whether it’s completing the required length
size or not, and if it’s correct we will update the new password
and set the loading to be false. In case of any error, the warning
message will be displayed.

○ Language Dialog is used to choose the language and it depends on
Sugar.SelectBox i.e. selectbox.js file.

- In this component’s template, there will be a parent div of class
module-dialog, then inside it, there will be two divs. First for the
toolbar, there will be:

○ A module-language icon based on Sugar.Icon i.e. based
on icon.js component.

○ A title
○ A cancel button for closing the dialog
○ An OK button for saving the current settings and closing.

Then the second div is for the content. It firstly contains a p for
instruction and secondly the select box based on the selectbox.js
component.

- In this component, we will be storing data of languages options
and sending this array of languages as props to the selctbox.js
file.

- If the language selected from the box is different from the current
language, then we will update the language to the index 0 and

15

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

restart the app by rendering it to the home screen. Else on
clicking OK we just close the dialog popup.

○ In the About My Computer dialog, which shows about the current
device and its details about copyright and license.

- In the template inside the parent div, firstly we will have a div

for toolbar similar to others, then a warning component div
which is based on Sugar.DialogSettingsWarningBox i.e.
warningbox component. And then there will be a div for all
software and copyright details.

- In the content div, we will have details about the Sugarizer
version, computer-client type, computer browser as well as its
version and computer storage. After that a checkbox for Reinit
journal and settings. Then after an hr, information about
copyright and also a link to see all contributors.

- We will dynamically set the data about the computer and in
reinitcheck function, if the checkbox is checked we will clear
the stored data in the journal and an alert message at the
bottom will be shown. So, after clicking OK on the toolbar, it will
restart the app with these changes.

○ In the About My Server dialog, there is a setting using which we can
connect to the server and can be in shared mode and interact and play
multiplayer games with other users connected to that particular server.

- In the template, after the toolbar similar to other dialogs, there is
a checkbox. If it’s checked or we are already connected to the
server then the div about server name, address, description, and
our username will be shown. Else only the checkbox will render
and if the user has checked it, then only other components for
taking input will render, i.e. user will have to enter the server name
he wants to connect to. Then for connection user have to enter its
image and password. Other than this, there is a warning box div,
which will be rendered after changing the checkbox value and
clicking the OK button. It has two buttons: Restart Now to apply
changes and Cancel Changes to cancel changes. Currently, at
the time of input, there is also a div for the QR code.

16

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

- We will be using all these components in steps:
○ In step 0, we show the PleaseConnectMessage i.e. to

connect to the server.
○ In step 1, input the server URL.
○ In step 2, input the password image.
○ In step 3, after clicking the OK button we will render a

warning message to restart the application.
- For connecting the user to the server by using the username and

image password, we get its color, its private and shared journal
data from the server and then update the app and render the
home screen with all this information.

○ For My Privacy dialog, which is used for some personal settings related
to sharing activity work to the server and also for deleting the local or
server account.

- In the template of this dialog, there will be a toolbar and warning
box similar to other dialogs. After that in the content div we will
have three checkboxes, in which two are related to the server so
will be displayed only when the user is connected to the server.
The third one is about deleting the account, so it will show option
to only delete the local account if the user is not connected to the
server. Else user can see both buttons i.e. to delete the local or
server account.

- For deleting an account there will be a warning message to
restart or cancel changes. But for the other two checkboxes
privacy will be just updated after clicking the OK button.

- For deleting the local account, we just need to clean the local
datastore by setting it to null, but for deleting the server account,
after the function of deletion from the server, we will also have
conditions to catch any server-related error if the function
doesn’t perform perfectly.

○ Now for Launcher dialog, which is for android and iOS:
- In the template, there will be a parent div of class

module-dialog, then inside it, there will be three divs present.
First for the toolbar, which contains:

17

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

○ a launcher icon based on Sugar.Icon i.e. based on
icon.js component

○ A title
○ A cancel button for closing the dialog
○ An OK button for saving the current settings and closing

will be present.
Now, 2nd div is for the warning box, and the third is for
launcher-message and a nested div for launcher-icons
class, which are again based on the icon.js component.

- To set the launcher, we will add the class selected dynamically
on clicking nativeIcon or sugarIcon.

- If any error happed, a warning box div will display or if
everything works fine we will restart with the selected launcher
and hide the dialog popup.

○ The template of the Warning Box component will have the parent div
with a class named settings-warningbox and contain mainly two
div. The first one is for Title: “Warning” and for the warning message.
The second one contains two buttons, one for “cancel changes” and
another one for “restart now”.

So these files' interconnection can be summarized in the image given below:

18

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

➢ Tutorial (lib/tutorial.js):
Intro.js tour library can be used in place of the bootstrap tour. It is a lightweight
JavaScript library for creating step-by-step and powerful customer
onboarding tours and live demos similar to bootstrap-tour.
Similar to current tutorial.js, we can keep a specific icon button to start the tour
of the app, by using
introJs().start(); inside the function which is called on clicking the icon
to start the tour.
Comparison of bootstrap-tour and intro.js:

Comparison bootstrap-tour intro.js

Stars 4.4k 21.1k

Forks 956 2.6k

19

https://introjs.com/
http://bootstraptour.com/
https://introjs.com/

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

Latest Version 30 Sep 2017 5 Apr 2021

Last Commit 4 years ago 11 days ago

Language CoffeeScript JavaScript

Other than these files I will also be implementing the following two important
features:

1. An encapsulation for basic UI components: Button, Entryfield, Checkbox,
Popup, etc:
Currently, enyo.Button, enyo.Checkbox etc are used in the above files. As
above files will be written in VueJs replacing EnyoJs. It’s better if we write
buttons, checkboxes, etc components that are used in these files in VueJs too
so that these files become completely independent from EnyoJs.
For this, I will be writing UI component files of buttons, Entryfiels, checkboxes,
etc.

2. Sugarizer Vue.js activity development tutorial to vue3 from vue2:
Currently VueJs tutorial for the development of Pawn activity is written in Vue2,
But Vue3 is the new default version of VueJs. It would be better if the tutorial
will be written using the latest version else it might happen in the future that a
particular function that is not supported anymore, will break the code.

How will it impact Sugar Labs?
Sugarizer is a great tool with many features. It can be widely adopted especially with
the advent of smartphones and internet access all around the world. Currently,
Sugarizer's core UI relies on the EnyoJs framework. It is a very old deprecated
Javascript framework for cross-platform mobile, and desktop. It's not updated
frequently and its documentation for working is also not beginners friendly. In this
project, I will be rewriting some .js files written in EnyoJs to VueJs. This will help
Sugarizer to replace EnyoJs in future versions.
VueJs documentation is easy to follow and it’s updated from time to time. Vue is
easy to maintain and considering future prospects it is necessary to have a
codebase easier to understand and contribute, to let new contributors comfortably

20

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

come in. Also, it will be a starting step to shift to VueJs from EnyoJs. This framework
will also help in the smooth functioning of Sugarizer and its activities.

What technologies (programming languages, etc.) will you be using?
The Major part of the project will involve coding in the Vue.js with this I will also work
on some styling changes in CSS to match the new component template with the
current Sugar UI. Other than this, for tutorial.js, bootstrap tour library migration will
require some frontend work in CSS to match the current tutorial UI and tour box.

Timeline

Break down the entire project into chunks and tell us what will you work on
each week.

Days Tasks

Pre GSoC
toMar 7, 2022 May 20, 2022

➢ Learn the working of EnyoJs and understand the
working of files and Sugarizer core architecture

➢ Familiarize myself with the current implementation
➢ Stay connected with the community and

contribute to Sugar Labs

Community Bonding
Period

toMay 20, 2022 Jun 12, 2022

➢ Discuss the creation of the testing app for this
project and learn about it

➢ Go through documentation of EnyoJs and VueJs
for code understanding about the integration to
android and iOS platform

➢ Discuss the final tutorial library to implement
tutorial.js and learn about it

➢ Also, go through the merged and in-progress PR's
to have a better understanding and discuss
doubts related to it with mentors.

➢ Explore the tech stack required for the project.

Week 1
toJun 13, 2022 Jun 19, 2022

➢ Start working to Integrate testing app to check the
working of rewritten files

➢ Discuss sequence and set up to write the files and

21

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

commit the changes

Week 2
toJun 20, 2022 Jun 26, 2022

➢ Start writing icon.js file
As most of the components depend on it, it’s important
to start with this file frist

Week 3
toJun 27, 2022 Jul 3, 2022

➢ Implement direct SVG rendering feature
As this icon.js component will rely on direct SVG
rendering, with this icon.js file will be completed

Week 4
toJul 4, 2022 Jul 10, 2022

➢ Complete iconButton.js
The iconButton.js component is based on icon.js, so
after completing icon.js, it would be easier complete it

Week 5
toJul 11, 2022 Jul 17, 2022

➢ Make new Listview.js to use in the popup.js
To start popup.js file, first the content component i.e.
child component needed to be completed

Week 6
toJul 18, 2022 Jul 24, 2022

➢ Start working on popup.js
Popup.js file depends on icon.js and listview.js, both had
been done, so popup.js can be completed this week

Phase 1 Evaluation
toJul 25, 2022 Jul 29, 2022

➢ Completed popup.js and icon.js
Icons rendering with popup timer function and the
popup will be ready by this time

Week 7
toJul 25, 2022 Jul 31, 2022

➢ Start working on selectbox.js
As popup.js and icon.js both are completed,
selectbox.js component can integrated

Week 8
toAug 1, 2022 Aug 7, 2022

➢ Complete palette.js
palette.js depends on icon.js, selectbox.js and popup.js,
so it can also done now

Week 9
toAug 8, 2022 Aug 14, 2022

➢ Start working on emogi.js
Password.js will be depend on emoji.js for particular
block of emoji with letter and image

Week 10
toAug 15, 2022 Aug 21, 2022

➢ Complete password.js file with emoji.js
As emoji.js completed, now we can complete
password.js component

Week 11 ➢ Start Searchdfield.js

22

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

toAug 22, 2022 Aug 28, 2022 To use in the dialog.js toolbar it’s should complete
before dialog.js

Week 12
toAug 29, 2022 Sep 4, 2022

➢ Started working on dialog.js
➢ Complete warningbox component

This will be the most lengthy file, but can be started
now as mostly dependent component are covered

Week 13
toSep 5, 2022 Sep 11, 2022

➢ Complete about me and language component
These child components of dialog.js for different
settings, can be completed as icon.js and slectebox.js
are covered

Week 14
toSep 12, 2022 Sep 18, 2022

➢ Complete My server component
Password.js is used here for server login, which is
completed, so it can also be done easily

Week 15
toSep 19, 2022 Sep 25, 2022

➢ Complete my security component
It completely depends on password.js, so can be
completed in a week

Week 16
toSep 26, 2022 Oct 2, 2022

➢ Complete about my computer component
An independent component but an important part of
dialog.js

Week 17
toOct 3, 2022 Oct 9, 2022

➢ Complete my privacy component
Can be completed as only depends on icon.js and
warning-box component

Week 18
toOct 3, 2022 Oct 9, 2022

➢ Complete my launcher and android setting
components
Complete these two specific android settings icon in
dialog.js

Week 19
toOct 10, 2022 Oct 16, 2022

➢ Complete dialog.js using all child components
Integrate all the small components related to dialog.js
together in a file

Week 20
toOct 17, 2022 Oct 23, 2022

➢ Implement audio.js file
With a good knowledge of Cordova, now rewriting of
this file would be easy

Week 21 ➢ Tutorial.js file

23

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

toOct 24, 2022 Oct 30, 2022 Integration of this file using the new decided library for
tutorials and instructions

Week 22
toOct 31, 2022 Nov 6, 2022

➢ Complete integration of tutorial.js file
Finally completing this file with the required CSS styling
to make it similar as Sugar UI currently

Week 23
toNov 7, 2022 Nov 13, 2022

➢ Start working on extra UI components
Implement basic UI components like Button, Checkbox,
Popupbasic in the VueJs framework

Week 24
toNov 14, 2022 Nov 21, 2022

➢ Cleanup and wrap up the work.
➢ Tutorial migration for development of tutorial in

Vue from Vue version 2 to 3

How many hours will you spend each week on your project?

My college summer vacations start from May 12 to July 20. In this period I can give
about 45-50 hours per week and after college starts, I can give about 35-40 hours
per week. I have no other commitments for the summer vacation, so I can devote
most of my time to GSoC.

How will you report progress between evaluations?

I will be active on GitHub as I will make regular pull requests to the Sugarizer while
interacting with the mentors, so anyone in the org can view my progress. Thus, my
progress will always be reported thoroughly on GitHub. I am also planning to write
weekly or fortnightly blogs in which I will post updates about my progress, obstacles
being faced, and their solutions. I will be reachable anytime through matrix IRC,
Email, or a planned video session.

Discuss your post-GSoC plans. Will you continue contributing to Sugar Labs
after GSOC ends?

I am planning to continue working on the project after the program ends. After this
project, the VueJs framework will help to replace EnyoJs in future versions. So, there
will still be many files and small UI components to complete. I am also planning to
update the versions of Vue in many activities written in VueJs. I am amazed by the
community relations and the work carried out by this organization. I vision to hone

24

GSoC’22 | Sugar Labs | Sugarizer Vue.js UI Project

my skills further and put them to use to give back to the community. I aim to develop
mentorship skills and the ability to guide others and try to give back to the
community by mentoring and guiding others. I hope to mentor future GSoC and GCI
students.

I am looking forward to contributing to Sugar Labs this summer season.
Kind Regards.

25

