
GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Google Summer of Code
Sugar Labs

Music Blocks Project Blocks Reorganization

Basic Information:

Name Daksh Doshi

Github daksh4469

LinkedIn Daksh Doshi

Email ddaksh.2711@gmail.com

Phone +91-7874034708

IRC Nickname daksh4469

Location Ahmedabad, India

Time Zone India (UTC + 5:30)

Languages Gujarati/Hindi, but I am proficient in speaking,
reading, writing, and understanding English.

University Information:

● University: Indian Institute of Technology, Roorkee
● Majors: Computer Science and Engineering
● Current: II Year (Graduation expected in 2023)
● Degree: Bachelor of Technology (4 Year Program)

1

https://github.com/daksh4469
https://www.linkedin.com/in/daksh-doshi-464847195/
mailto:ddaksh.2711@gmail.com

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Contact Information:

Typical working hours include:
● UTC 0400 - UTC 0700 hrs (IST 0930 - IST 1230)
● UTC 0830 - UTC 1400 hrs (IST 1400 - IST 1930)
● UTC 1600 - UTC 1930 hrs (IST 2130 - IST 0100)

I can start my day 2 hours early or late and will be reachable anytime through
my Mobile No. and Email.

Skills:

Programming Languages and Frameworks:
● Fluent in HTML, CSS, SCSS, Javascript, Typescript, C/C++, Java, Python
● Sound knowledge of OOPs
● Web Frameworks: React, Django, Django-REST, Nodejs, Express,

Mongoose
● Libraries: Bootstrap, EJS, Material UI, jQuery, Socket.IO, CUDA Library, C++

Standard Library
● Databases: MySQL, MongoDB
● Utilities: Figma, Postman, Firebase, MongoDB Atlas, Heroku, Docker

Development Environment:
● Ubuntu 20.04
● Visual Studio Code as IDE supported by a range of extensions.
● Linux Shell
● Chrome Dev Tools
● Git for version control

Apart from the technologies listed above, I have sound knowledge of MERN
Stack and MVC Architecture. My other interests include Web Design and
Prototyping, and Competitive Programming.

2

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

About Me:
I am Daksh Doshi, a sophomore at the Indian Institute of Technology,
Roorkee, where I am pursuing Computer Science and Engineering. I was
introduced to software development and programming in my freshman year.
Since then, I have explored various fields such as Cryptography, Web
Development, Data Structures, Algorithms, and Computer Architecture. I
developed a passion for Web Development and Design since my first
semester at college. I have been learning new technologies and their
applications every day since. I have been contributing to open-source for
about three months now and am adoring it. I have been working with a team
to refactor the entire website of UBA-IIT Roorkee. UBA (Unnat Bharat Abhiyan)
is an organization that aims to aid the rural areas of India by addressing the
issues and solving them through appropriate and sustainable technologies
and by organizing suitable events.

Past Projects:
● EndGem: (Git Repository)

○ A full-stack Web Application built on NodeJS through Express.js
Framework and MongoDB Atlas on the back-end and EJS
templating on the front-end along with Passport Authentication
for users.

○ Built to organize different types of documents according to their
courses. Features include downloadable content, top downloads
to date, and the ability to upload and delete documents.

● CovidWelfare: (Frontend Git Repository | Backend Git Repository)
○ A full-stack Web Application, built on React(JS) for front-end and

Django on the back-end with a REST API built using Django REST
Framework.

○ Built to enable people to remotely help people in need of
resources in the trying times of Covid-19. Connects the users by
SEEK and PROVIDE functionality.

3

https://www.iitr.ac.in/campus_life/pages/Unnat_Bharat_Abhiyan__IIT_Roorkee.html
https://github.com/daksh4469/EndGem
https://github.com/daksh4469/covid-welfare-frontend
https://github.com/daksh4469/covid-welfare-api

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

○ Provides the real-time locations of users with the help of Google
Maps API. Incorporates a Notification System to notify the users in
need of resources and the provider users.

● Sorting Visualizer: (Git Repository)
○ A React(JS) based Web Application to enable visualization of

Bubble Sort Algorithm.
○ Includes the feature of manually setting the array size for

incorporating a better understanding of the algorithm.

This is not an exhaustive list of all the projects. Some of my other projects can
be found on my GitHub profile here.

Contributions to Sugar Labs:

I am an active contributor to Sugar Labs for the past 2.5 months now. This has
helped me understand the codebase of musicblocks better, and I now feel
comfortable working with it. Contributing to musicblocks has helped me
comprehend how it works internally and understand the interactions between
various components. I am working with React (Javascript) for the past year
and have built several projects using it. Recently, I have been learning
Typescript and its applications with React library. Now, I feel pretty
comfortable using Typescript with React.

My contributions in sugarlabs/musicblocks can be widely classified into three
categories: Porting to ES6/Linting/JSDoc/Documentation/Refactoring,
Bug/Regressions Fix, and Enhancements/Features added. I have been
contributing to Music Blocks, and the statistics of my contribution are given
below:

● Pull Requests (PRs): 43 (27 merged, 8 open, and 8 closed)
● Commits: 58 (1564++, 1185--)
● Issues: 1 (1 closed)

4

https://github.com/daksh4469/SortingViz
https://github.com/daksh4469

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Pull Requests:

sugarlabs/musicblocks:

Porting to ES6, Linting, JSDoc, Documentation and Refactoring:

❖ #2760 (merged): Update a function to ES6 Arrow Function in js/toolbar.js
❖ #2764 (closed), #2773 (closed): Add class to js/widgets/temperament.js and

port ES6 to syntax.

❖ #2810 (closed), #2811 (merged): toolbar.js: Prettify, Linting and JSDoc
documentation

❖ #2812 (merged): widgets/jseditor.js: Linting and Prettify
❖ #2814 (closed): utils/musicutils.js: Pretiffy,linting and JSDoc Documentation
❖ #2817 (merged): utils/platformstyle.js: Pretiffy, Linting and JSDoc Documentation

❖ #2818 (merged): basicblocks.js: Pretiffy,linting and JSDoc Documentation
❖ #2819 (merged): mxml.js: Prettify and Linting
❖ #2821 (merged): notation.js: Linting and prettify
❖ #2824 (merged): widgets/statistics.js: Add JSDoc Documentation
❖ #2827 (merged): FAQ/README.MD: Fixed some typos and grammatical mistakes.

❖ #2830 (merged): turtleactions/DictActions.js: Linting and Prettify
❖ #2831 (merged): Linting and Prettify: All files in js/turtleactions
❖ #2833 (open): blocks.js: Linting, pretiffy and removed debug logs
❖ #2835 (merged): blockfactory.js: Add global locations and constructor JSDoc
❖ #2905 (open): palette.js: Linting and Prettify
❖ #2915(open): musickeyboard.js: Add ES6 Class

Bug/Regressions Fix:

❖ #2807 (merged): Fix Bug in Arbitrary Edit Tab and improvements in Tempo
Widget.

❖ #2837 (merged): pitchstairecase Bug Fix: Sound keeps playing even after
closing the widget.

❖ #2845 (merged): Bug Fix, Temperament Widget: Play and Stop not working properly

❖ #2848 (open): phrasemaker.js: Bug Fix, Linting and Prettify.
❖ #2854 (merged): Bug Fix: Pitch Staircase Widget

5

https://github.com/sugarlabs/musicblocks
https://github.com/sugarlabs/musicblocks/pull/2760
https://github.com/sugarlabs/musicblocks/pull/2764
https://github.com/sugarlabs/musicblocks/pull/2773
https://github.com/sugarlabs/musicblocks/pull/2810
https://github.com/sugarlabs/musicblocks/pull/2811
https://github.com/sugarlabs/musicblocks/pull/2812
https://github.com/sugarlabs/musicblocks/pull/2814
https://github.com/sugarlabs/musicblocks/pull/2817
https://github.com/sugarlabs/musicblocks/pull/2818
https://github.com/sugarlabs/musicblocks/pull/2819
https://github.com/sugarlabs/musicblocks/pull/2821
https://github.com/sugarlabs/musicblocks/pull/2821
https://github.com/sugarlabs/musicblocks/pull/2824
https://github.com/sugarlabs/musicblocks/pull/2827
https://github.com/sugarlabs/musicblocks/pull/2830
https://github.com/sugarlabs/musicblocks/pull/2830
https://github.com/sugarlabs/musicblocks/pull/2831
https://github.com/sugarlabs/musicblocks/pull/2831
https://github.com/sugarlabs/musicblocks/pull/2833
https://github.com/sugarlabs/musicblocks/pull/2835
https://github.com/sugarlabs/musicblocks/pull/2905
https://github.com/sugarlabs/musicblocks/pull/2915
https://github.com/sugarlabs/musicblocks/pull/2807
https://github.com/sugarlabs/musicblocks/pull/2837
https://github.com/sugarlabs/musicblocks/pull/2845
https://github.com/sugarlabs/musicblocks/pull/2848
https://github.com/sugarlabs/musicblocks/pull/2848
https://github.com/sugarlabs/musicblocks/pull/2854

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

❖ #2863 (merged): Fix regressions in MusicKeyboard widget
❖ #2878 (merged): Bug Fix: Tooltip of Collapse Icon
❖ #2891 (open): Bug Fix: phrasemaker widget plays when no notes are added
❖ #2900 (open): statistics.js: Add global locations and bug fix
❖ #2902 (open): BugFix: rhythmruler widget does not render individual pause

buttons

Enhancements/Features added:

❖ #2776 (merged): Update UI of Temperament Widget
❖ #2832 (merged): WidgetWindows: UX Enhancement
❖ #2838 (merged): widgets/status.js: Improved UI of status widget
❖ #2855 (merged): Oscilloscope: Error Fix and UI modification
❖ #2841 (closed), #2857 (merged): Update the MusicKeyboard widget on

maximizing.
❖ #2874 (merged): Enhanced the UI of search-bar and its suggestions
❖ #2903 (open): pitchdrum-mapper: Implement Stop Functionality and

enhance UI

sugarlabs/musicblocks-v4-lib:

❖ #27 (closed but helped in #28) : Port musicutils.py to Typescript.
❖ #29 (merged) : Add testcases to musicutils.test.ts
❖ #33 (closed): Update Scale section in README.md
❖ #34 (open), #49 (merged): Add documentation for musicUtils.ts
❖ #42 (merged): Add error testcases to musicutils.test.ts

Issues:
● #2872 (closed): Blocks lose their color on hovering over them

6

https://github.com/sugarlabs/musicblocks/pull/2863
https://github.com/sugarlabs/musicblocks/pull/2878
https://github.com/sugarlabs/musicblocks/pull/2891
https://github.com/sugarlabs/musicblocks/pull/2900
https://github.com/sugarlabs/musicblocks/pull/2902
https://github.com/sugarlabs/musicblocks/pull/2776
https://github.com/sugarlabs/musicblocks/pull/2832
https://github.com/sugarlabs/musicblocks/pull/2838
https://github.com/sugarlabs/musicblocks/pull/2855
https://github.com/sugarlabs/musicblocks/pull/2841
https://github.com/sugarlabs/musicblocks/pull/2857
https://github.com/sugarlabs/musicblocks/pull/2874
https://github.com/sugarlabs/musicblocks/pull/2903
https://github.com/sugarlabs/musicblocks-v4-lib
https://github.com/sugarlabs/musicblocks-v4-lib/pull/27
https://github.com/sugarlabs/musicblocks-v4-lib/pull/29
https://github.com/sugarlabs/musicblocks-v4-lib/pull/33
https://github.com/sugarlabs/musicblocks-v4-lib/pull/34
https://github.com/sugarlabs/musicblocks-v4-lib/pull/49
https://github.com/sugarlabs/musicblocks-v4-lib/pull/42
https://github.com/sugarlabs/musicblocks/issues/2872

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Commits:
While contributing to Sugar Labs, I have made a total of 61 commits (till the
date of writing). All of these commits can be found here.

(Contribution Statistics of sugarlabs/musicblocks repository from Jan 17 - Mar 27)

7

https://github.com/search?q=is%3Apr+author%3Adaksh4469+org%3Asugarlabs&type=Commits

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Project Details:

Title: Music Blocks Project Blocks Reorganization

Coding Mentors: Anindya Kundu, Walter Bender

Assisting Mentors: Peace Ojemeh

Music Blocks is being refactored to musicblocks-v4. This project aims to
address the issues related to the presentation of the blocks in the canvas in
the current version of musicblocks(version 3) and build upon them to design
and implement the blocks’ organization in musicblocks-v4.

As Music Blocks is going through a complete overhaul, blocks graphics and
the overall UI is also bound to change for good. Hence, this project might
need some coordination with other projects i.e., blocks graphics refactoring,
music blocks menus and palettes, and music blocks debugging aids.

Project Tasklist:
● Familiarize yourself with the current implementation.
● Come up with a framework for better project structuring.
● Design a flexible guidance layer on the top of the canvas.
● Implement the above in React (Typescript).

The Problem:
In the current version of musicblocks, there exist numerous issues concerning
the presentation and organization of the blocks on the canvas. These issues
are as follows:

1. Currently, a user can arbitrarily place any block in any position, and
thus, it gets quite overwhelmingly crowded when a considerable
amount of blocks are present in a project. This gets quite noticeable
and hampers the project management experience of a user.
An example project where this is visible is shown below (from Planet >
Global):

8

https://github.com/meganindya
https://github.com/walterbender
https://github.com/perriefidelis
https://github.com/sugarlabs/musicblocks-v4
https://musicblocks.sugarlabs.org/

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

(Project Reference: 12 Bar Blues with a Guitar Tab)

2. The blocks can overlap each other without any constraints whatsoever.
In the current version of musicblocks, the block or block-stack that a
user has been more recently engaged with overlaps the other blocks
around it. A simple example depicting this is shown below:

(Here, the music keyboard widget block overlaps the start block as it has been more
recently worked with.)

9

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

3. There is a feature in musicblocks to ‘clamp’ some blocks. However, this
feature is only present in some of the blocks. The issue mentioned in the
2nd point affects these clamped blocks heavily as they can become
almost entirely invisible to a user if it gets overlapped by another block
or block-stack.

4. As mentioned above, the feature to clamp is only available in some of
the blocks. Now, sometimes the width of a block-stack can get
congesting, and sometimes, there is no option to inline-clamp these
blocks. This results in large parts of the blocks in the project getting
overlapped by a single block-stack. A simple example representing this
is generating the action block through the temperament widget. This is
shown in the below image:

(In this musicblocks project, the start block and the set temperament block are not
visible due to overlapping by the define temperament block, majorly due to its large
width.)

5. Adjusting the placements of the blocks can be quite tedious. If the
project is quite large, complex, and utilizing many blocks, the task of
dragging a block/block-stack through the entire project can be pretty
overwhelming.

10

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

The Solution:

The initial idea is to introduce swim lanes to guide a user to encourage better
project management. Swim lanes can help a user arrange the blocks in
columns and help better project management and much cleaner projects. I
believe that a user should have a significant role in choosing how he/she
wants to organize the blocks as each project and each user is different. Thus,
this utility should be optional for a user to choose as, most likely, this feature
would be much more helpful in more extensive and more complex projects
than in beginner projects. We can include this as an Advanced Mode or High
Shelf feature (depends on the new UI/UX). This utility has the following
deliverables:

● Provide the user the choice to use this feature or not:
A user can choose to utilize the feature and can also disable(stop
using) it. This feature is more likely to be used in more extensive and
complex projects than in small beginner projects. For example: In the
below-shown image of a musicblocks project, there is no such need to
organize the blocks in swim-lanes. It uses just a single block-stack that
can be managed comfortably with the standard organization.

(Project: SandyChopinBerceuse from Planet > Global)

11

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

● Set the number of swim-lanes:
If the feature is enabled, a user can set the number of swim-lanes
according to the project. However, there may be an upper limit to the
number of swim-lanes, which can be calculated by the maximum
width of a block/block-stack present in the project. However, we can
also pre-define this upper limit based on . We may need to manage
one issue: the variance of the number of swim-lanes to the block-size,
which can be increased or decreased using the “Increase Block Size”
and “Decrease Block Size” buttons, respectively.

● Individually scrollable swim-lanes:
One potential advantage that swim-lanes can provide is the freedom
to individually manage each swim-lane. Each swim-lane can be
scrollable which gives the user the freedom to manage individual
swim-lanes intensively rather than scrolling through the whole project
altogether. This resolves the tedious job of dragging a
block/block-stack through the whole project. In the case of individually
scrollable swim-lanes, a user can simply drag a block/block-stack from
one lane to another without holding and dragging it through the entire
canvas. An inceptive prototype of implementing swim-lanes:

(Note: The above design is made considering the current block design, and could be
modified after refactoring the block design in musicblocks-v4.)

12

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

● Collapse the turtle stage:
One aspect to keep in mind while developing the swim-lanes is the
placement of the mouse in the canvas. In the presence of swim-lanes,
the mouse could adequately be placed using the Collapse feature.
Also, on clicking the Play button, the swim-lanes would hide just like
the blocks in the current version of musicblocks.

● A significant aspect in developing swim-lanes is each swim-lane’s
width since every swim-lane will have a unique set of blocks or
block-stacks. The upper-bound to the number of swim-lanes is also
determined by the width of block-stacks. Thus, extensive widths can
result in a low number of swim-lanes. One way of handling this is by
providing the user the option to set the widths(probably by dragging)
of each swim-lane. Another way of handling this is by adding the
“inline-clamp” functionality to some more blocks. In the current
version of musicblocks, there are only three INLINECOLLAPSIBLES blocks:

○ newnote (note value block)

○ interval (scalar interval (+/-) block)

○ osctime (milliseconds block)

13

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

However, in most of the cases (including the Define Temperament one
mentioned on Page 10), the width of a block-stack is increased due to
nested number-blocks (mainly add(+), subtract(-), multiply(x),
divide(/), mod and power(^)).

One idea is to make these number blocks inline-collapsable. This
would help reduce the overall width of a block-stack and thus, fewer
cases of overlap in the regular block organization. A very basic
implementation of this would involve representing the answer, after
operation between the connected numbers, as the name of the
clamped block.

Before clamping the divide block:

After clamping the divide block:

Above shown is a very initial example of this idea. The label “3 / 12” can
be calculated using the following function in the block.js file of the
current MB.

14

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Similarly, if all the number blocks are made inline-collapsible, widths of
the block-stacks could be reduced significantly. Value of these number
blocks is already being stored as the value field of a block in the
blocklist in the current version of musicblocks. Thus, this idea would
work similarly in case of nested number blocks.

● Transfer of blocks/block-stacks:
We can maintain a block-list and their positions of each swim-lane and
a user can comfortably drag and drop a block/block-stack from one
swim-lane to any position in some other swim-lane after scrolling to
the desired position. This also helps in solving the overlap issue, as now,
on dropping (“onmouseup”) event, the block/block-stack will get
positioned in the swim-lane accordingly.

15

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

● The Trash functionality would also be needed to manage in presence
of swim-lanes as currently, one has to drag a block/block-stack to the
bottom of the screen and hover over the displayed trash icon. However,
since the blocks/block-stacks are presented as list items in a
swim-lane, it would be preferable to add a Trash icon for every list item
(just as in any ToDo list, but not as checkbox) containing a
block/block-stack.

16

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Summary of the Proposed Solution:

1. Add a feature (in advanced mode/high-shelf) to organize the blocks in
swim-lanes. (optional for user to enable/disable)

2. Every swim-lane will be scrollable, hence, providing the user the
advantage of managing each set of block/block-stacks individually.

3. The user can set the number of swim-lanes up to an upper limit based
on the width of the block-stacks, and the turtle stage would be
collapsed.

4. Each block/block-stack will be arranged in a swim-lane as a draggable
list item. Also, the turtle stage would need to be collapsed so as to
incorporate these swim-lanes. One idea is that maybe, the collapsed
turtle stage could appear by a pop-up.

Below shown is the workflow activity diagram describing the process of
rendering the swim-lanes organization of a project.

(The given flowchart shows the workflow of the proposed swim-lane feature)

17

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

5. The order of blocks/block-stacks can be arranged in a swim-lane by
dragging and dropping.

6. A block/block-stack can also be added by “click” in palette menus. In
this case, it will be rendered on the top of the active swim-lane. A
block/block-stack can be moved from one swim-lane to another by
dragging and dropping.

7. Issues that may need handling:
a. The feature of increasing and decreasing the block size.
b. The width of certain block-stacks may result in a decrease of the

upper limit of the number of swim-lanes.
c. A user should not be allowed to enable horizontal-scroll while

using this feature.

8. Utility ideas:
a. Some more blocks may be added to the INLINECOLLAPSIBLES

blocks so as to control the width of a block-stack.
b. Resizable swim-lanes by adjusting the width by dragging, and

enable horizontal-scroll to incorporate more swim-lanes
without any constraints.

An inceptive idea representing the idea, in the current version of musicblocks,
is shown below (also shown on Page 12):

18

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Using React can be a boon here as it would be assistive in developing every
list-item as a component and every swim-lane as an individual component
utilizing the list-item’s components. Every swim-lane would be mapped in the
canvas when the user opts to use this feature. The blocklist is each swim-lane
can be managed using useState() and useEffect() hooks. Below is a sample
component tree of a swim-lane in the canvas of musicblocks-v4.

(Component Tree of a single swim-lane in the canvas)

19

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

Timeline:

Pre GSoC ● Familiarize myself with the current
implementation.

● Continue contributing to Sugar Labs.

Community
Bonding
(17th May - 7th June)

● Get to know the community better and bond
with the mentors and developers.

● Receive feedback on this project if something
needs to be amended.

● Explore the tech stack required for the project.

Week 1
(7th June - 14th June)

● Discuss and finalize the ideas to be
implemented concerning this project in
musicblocks-v4.

Week 2
(14th June - 21st June)

● Work out the final framework, workflow and the
structure for this project.

Week 3 - 4
(21st June - 5th July)

● Decide the title and icon of this feature after
discussion with the mentors.

● Setup the re-render of canvas on enabling this
feature with block/block-stacks alloted to a
swim-lane.

Week 5
(5th July - 12th July)

● Review the work done with the mentors and
make necessary amendments.

Evaluations

Week 6-7
(12th July - 26th July)

● Work on the transfer of block/block-stacks
between swim-lanes and the rearrangement of
the block-list in a swim-lane.

Week 8
(26th July - 2nd August)

● Discuss and work on any new enhancements in
UI or functionalities.

● Add the necessary guide/documentation for
this feature.

Week 9
(2nd August - 9th August)

● Testing of the feature.
● Cleanup and wrapping up the work.

Week 10
(9th June - 16th June)

● One week buffer to compensate for any delay.

20

GSoC 2021 | Sugar Labs | Music Blocks Project Blocks Reorganization

How many hours will you spend each week on your project?
My college summer vacations are scheduled to take place from 10th June to
2nd August, which is almost the whole of the coding phase. I will be able to
devote around 40-45 hours a week efficiently. I have no other commitments
for the summer vacations other than GSoC. So, I will be able to devote most of
my time to GSoC. I am also free on weekends and will keep the community
updated about my progress and maintain transparency about the project.

How will you report progress between evaluations?
I will be active on GitHub as I will be continuously working on the project while
interacting with the mentors. Thus, my progress will always be reported
thoroughly on GitHub. I am also planning to write weekly or fortnightly blogs
about my progress in the project. I will be reachable anytime through IRC,
Email, or a planned video-session.

Discuss your post GSoC plans. Will you continue contributing
to Sugar Labs after GSoC ends?
After GSoC, I plan on continuing my contributions to Sugar Labs as I am
amazed by the community relations and the work carried by this
organization. I will contribute to the ongoing issues and the enhancements in
the organization as there is always a scope of betterment on the web. I vision
to hone my skills further and put them to use to give back to the community. I
aim to develop mentorship skills and the ability to guide others and try to give
back to the community by mentoring and guiding others. I hope to mentor
future GSoC students.

Looking forward to contributing to Sugar Labs this summer season.
Kind Regards.

21

