
Sugar Labs:
Music Blocks Block Graphics Refactoring

Meta Info:

>Personal Details:

Name: Jaikishan Brijwani
Github: ricknjacky
IRC/Matrix nick: @ricknjacky
Slack-MB: @ricknjacky
Email: jaikishanbrijwani@gmail.com
Language: English
Location: Mumbai, India 🇮🇮🇮🇮
Time Zone: IST (UTC + 5:30)

>Education and Background:
University: Manipal University Jaipur, India
Majors: Computer & Communication Engineering
Current: Junior Year (expected graduation in 2022)
Degree: Bachelor of Technology (4 Year Program)

>Contact and Working Hours:
 Reachable anytime via Email, Matrix or Slack.

● 09:00-13:00, 16:00-19:00, 22:00-02:00 (IST)
● 03:30-07:30, 10:30-13:30, 16:30-20:30 (UTC)

https://github.com/ricknjacky
mailto:jaikishanbrijwani@gmail.com

Personal background:

I am a 20 year old junior, currently pursuing my BTech(Bachelor of
Technology) in Computer and Communication Engineering at
Manipal University Jaipur. I first got acquainted with computers and
aspects of software development in high school. The great and ever-
increasing utility of the same continued to fuel my desire to learn
more. In pursuit of exploring different fields of computer science, I
began learning web development in my freshman year and worked on
a couple of personal projects. I also learnt different languages
pertaining to Software Development like C++, Python, Dart etc.

I was introduced to the world of open source in my sophomore year.
Since then, most of my time went into learning new technologies and
developing software using them. I have been contributing to open-
source regularly since about six-seven months now.

I have experience working closely with a team courtesy of a couple of
internships I have done. I have been an active member of the Web
Development team of E-Cell MUJ and FOSS MUJ. While working on
my projects I adhere to very strict timelines and make sure to follow
the best practices to create impacts of the highest significance.

Programming Skills:

Languages JavaScript, TypeScript,

HTML, CSS, SCSS, Python,
GoLang, C/C++, PHP, SQL.

https://www.ecellmuj.in/
https://github.com/MFOSSociety

Web Frameworks React, Redux, Node, Django,
Django REST, Flask

Testing Jest

Libraries Socket.IO, Jquery, Bootstrap

Utilities InkSpace SVG, Adobe Xd,
Docker+Compose, CI+CD
Pipeline, Postman, Firebase

Development Environment :

● Windows 10

● VSCode as IDE supported by a range of extensions.

● Windows PowerShell

● Chrome Dev Tools

● Git for version control

Apart from the technologies listed above I have sound knowledge of
Object-Oriented Programming, architectures like MVC, MTV and
MERN/MEAN stack.

My other interests include Information Security, Blockchain,
DevOps and Machine Learning. Along with contributing to open-
source projects, I am working on some personal projects, exploring
and learning WASM.

My projects:

Dev Jobs ↗
• React based WebApp that uses GitHub Jobs API
• Used React Hooks and advanced state management
• The app is responsive and works fine on all devices, differing in pixel
dimensions
• Used SCSS partials for styling individual components

Chat‑App ↗
• Developed a real‑time, bi‑directional chat engine
• Used React and Express for Front‑End
• Used Socket.IO and Node.js Backend for implementation

To‑Do App ↗
• A personalized to‑do app using nodejs
• Used ejs templating engine for UI/UX.

I am not listing all the projects here. My other projects can be viewed
on my GitHub profile.

Open Source Contributions:

● Sugar Labs: I have been working with and actively

contributing to Sugar Labs projects i.e. Music Blocks and
Sugarizer namely for the past 6 months. Accentuated below is
the catalogue of my contributions for the same in the past.

https://github.com/ricknjacky/github-jobsapi
https://github.com/ricknjacky/github-jobsapi
https://jobs.github.com/api
https://github.com/ricknjacky/ChatApp-w-React-Socket.io
https://github.com/ricknjacky/ChatApp-w-React-Socket.io
https://github.com/ricknjacky/todo-app
https://github.com/ricknjacky/todo-app
https://github.com/ricknjacky

Pull Requests: -
➼ Music Blocks
❖ #2569 (merged) : fixed the grid does not fill the available space.

Fixes issue described in #2568.
❖ #2576 (merged) : fixed regression with camera block.

Fixes issue described in #2574.
❖ #2578 (merged) : fixed discrepancy with markdown file. Fixes

issue described in #2577.
❖ #2589 (merged) : Introduced a new feature via which the name of

the project can be loaded from the planet in the browser tab. Fixes
issue described in #2584.

❖ #2600 (closed) {PR was merged manually} : Guide artwork SVG files
were deprecated. Collaborated with Walter Bender in updating
them accordingly. Fixed issue #2591.

❖ #2601 (merged) : Stats widget’s documentation needed an update; I
proposed the same. Fixes issue described in #2546.

❖ #2604 (merged) : Oscilloscope widget was generating spam console
logs even after the stop button had been pressed. I fixed it here.
Fixes issue #2563.

❖ #2613 (merged) : Timbre widget displayed erratic behavior while
navigating through different filters. I proposed a fix for the same
here. Fixed issue #2612.

❖ #2691 (merged) : For some blocks, the help widget window could
not fit the SVG and the text below within the scope of the window.
I proposed a fix for the same. Fixes issue #2690.

❖ #2709 (merged) : Master guide on sugarlabs/musicblocks repository
had deprecated artwork, I updated the file, concurrent to the
current version of musicblocks.

❖ 2734 (merged) : Tour window showcased regression that arose, as
the method of calculating height of help widget was dynamic.

https://github.com/sugarlabs/musicblocks/pull/2569
https://github.com/sugarlabs/musicblocks/issues/2568
https://github.com/sugarlabs/musicblocks/pull/2576
https://github.com/sugarlabs/musicblocks/issues/2574
https://github.com/sugarlabs/musicblocks/pull/2578
https://github.com/sugarlabs/musicblocks/issues/2577
https://github.com/sugarlabs/musicblocks/pull/2589
https://github.com/sugarlabs/musicblocks/issues/2584
https://github.com/sugarlabs/musicblocks/pull/2600
https://github.com/sugarlabs/musicblocks/pull/2600#issuecomment-726393398
https://github.com/sugarlabs/musicblocks/issues/2591
https://github.com/sugarlabs/musicblocks/pull/2601
https://github.com/sugarlabs/musicblocks/issues/2546
https://github.com/sugarlabs/musicblocks/pull/2604
https://github.com/sugarlabs/musicblocks/issues/2563
https://github.com/sugarlabs/musicblocks/pull/2613
https://github.com/sugarlabs/musicblocks/issues/2612
https://github.com/sugarlabs/musicblocks/issues/2612
https://github.com/sugarlabs/musicblocks/issues/2690
https://github.com/sugarlabs/musicblocks/pull/2709
https://github.com/sugarlabs/musicblocks/pull/2734

❖ The following PRs fixed issue #2711
‣2714 (merged) Added new artworks and information
‣#2715 (merged) pertaining to widgets and blocks described
‣#2719 (merged) in the issue above.

❖ #2803 (merged) : Some SVGs displayed erratic behavior upon being
rendered in different browsers, fixed that issue here.

❖ 2862 (merged) : Temperament widget’s export functionality was
not working properly due to some bugs prevalent; I fixed those
bugs here. Fixed issue #2858.

❖ Music Blocks is being rebuilt from ground up and updating its
syntax to the ES6+ syntax was a task I contributed to, ranging from
porting to class definition, eliminating occurrences of “var”, “that”,
adding JSDocs, syntactically prettifying the code to make it more
readable etc. Following are the PRs I proposed for the same:
➔ #2688
➔ #2674
➔ #2675
➔ #2676
➔ #2755
➔ #2759
➔ #2769

➔ #2772
➔ #2792
➔ #2793
➔ #2797
➔ #2799
➔ #2806

My contribution on Music Blocks repository (30 Sep 2020-15 Mar 2021)

https://github.com/sugarlabs/musicblocks/issues/2711
https://github.com/sugarlabs/musicblocks/pull/2714
https://github.com/sugarlabs/musicblocks/pull/2715
https://github.com/sugarlabs/musicblocks/pull/2719
https://github.com/sugarlabs/musicblocks/pull/2803
https://github.com/sugarlabs/musicblocks/pull/2862
https://github.com/sugarlabs/musicblocks/issues/2858
https://github.com/sugarlabs/musicblocks/pull/2688
https://github.com/sugarlabs/musicblocks/pull/2674
https://github.com/sugarlabs/musicblocks/pull/2675
https://github.com/sugarlabs/musicblocks/pull/2676
https://github.com/sugarlabs/musicblocks/pull/2755
https://github.com/sugarlabs/musicblocks/pull/2759
https://github.com/sugarlabs/musicblocks/pull/2769
https://github.com/sugarlabs/musicblocks/pull/2772
https://github.com/sugarlabs/musicblocks/pull/2792
https://github.com/sugarlabs/musicblocks/pull/2793
https://github.com/sugarlabs/musicblocks/pull/2797
https://github.com/sugarlabs/musicblocks/pull/2799
https://github.com/sugarlabs/musicblocks/pull/2806

➼ Sugarizer
❖ #864 (closed) {PR was merged manually}: Added functionality to

allow frog to move with arrow keys in Food Chain activity. Fixed
issue #857.

❖ #882 (merged) : Added functionality for a popup when an image is
exported in Moon activity. Fixed issue #867.

❖ #883 (merged) : Added functionality for a popup when an image is
exported in Shared Notes activity. Fixed issue #868.

❖ #884 (merged) : Added functionality for a popup when an image is
exported in Labyrinth activity. Fixed issue #869.

❖ #889 (merged) : Added functionality for a popup when an image is
exported in Abecedarium activity. Fixed issue #870.

❖ #888 (merged) : Event bubbling bug wherein the Fullscreen mode
was no longer activated. Fixed it here, issue no: #859.

❖ #899 (merged) : Fixed bug in Color My World activity: erratically
mis-interpreted North Korea to be South, vice versa, issue: #898

My contribution stats over the course of over one year are as follows:

https://github.com/llaske/sugarizer/pull/864
https://github.com/llaske/sugarizer/pull/864#issuecomment-703069248
https://github.com/llaske/sugarizer/issues/857
https://github.com/llaske/sugarizer/pull/882
https://github.com/llaske/sugarizer/issues/867
https://github.com/llaske/sugarizer/pull/883
https://github.com/llaske/sugarizer/issues/868
https://github.com/llaske/sugarizer/pull/884
https://github.com/llaske/sugarizer/issues/869
https://github.com/llaske/sugarizer/pull/889
https://github.com/llaske/sugarizer/issues/870
https://github.com/llaske/sugarizer/pull/888
https://github.com/llaske/sugarizer/issues/859
https://github.com/llaske/sugarizer/pull/899
https://github.com/llaske/sugarizer/issues/898

In addition to contributing via Pull Requests that have obviated bugs, I
have also contributed to projects by discovering issues and
creating new issues on the projects’ respective repositories.

❏ Issues: -
● #2598
● #2612
● #2711

● #2779
● #2839
● #2864

I have also contributed by reviewing PRs at times to help maintainers.
As already mentioned, Music Blocks’ new core being built I am
contributing to it by contributing to sugarlabs/musicblocks-v4-lib repository
where new core “engine” of Music Blocks is being built. I have also
discussed some enhancements for the same.

● Discussions: -
○ #2710 , #2720, #32, #33

Project Overview:

Title: Music Blocks Block Graphics Refactoring

Coding Mentors: Walter Bender, Anindya Kundu
Assisting Mentors: Peace Ojemeh

https://github.com/sugarlabs/musicblocks/issues/2598
https://github.com/sugarlabs/musicblocks/issues/2612
https://github.com/sugarlabs/musicblocks/issues/2711
https://github.com/sugarlabs/musicblocks/issues/2779
https://github.com/sugarlabs/musicblocks/issues/2839
https://github.com/sugarlabs/musicblocks/issues/2864
https://github.com/sugarlabs/musicblocks/discussions/2710
https://github.com/sugarlabs/musicblocks/discussions/2720
https://github.com/sugarlabs/musicblocks-2/discussions/32
https://github.com/sugarlabs/musicblocks-2/discussions/33
https://github.com/walterbender
https://github.com/meganindya
https://github.com/perriefidelis

The task of block graphics refactoring is described in detail on ideas page.
The focus is mainly on the frontend blocks: i.e., to improve how they
interlock and how they expand/resize and several UX issues. The proposal
can be realized in an incremental manner, frequent pull requests safely
merged into the master branch throughout the summer.

Project Plan

 Deliverables:
• Come up with a framework for how the block interconnections

will work.
• Design the class structure for the new block rendering approach.
• Implement all of the above in React (TypeScript).

 The Problem:

Music Blocks has been in development and being used for over 6-7
years to this date. Over the course of 20+ releases and 3 main
version releases, the application has been used by an increasing
number of users, a share of them being Professional Musicians, K12
kids, teachers etc. In this process, some of its underlying features
have been challenged, the application is in a monolithic state with
galore of “GOD” objects, UI/UX issues, regressions etc.

The current implementation of block generation is mainly handled by
2 files blockfactory.js and protoblocks.js. These files handle
blockfactory artwork generation and define the classes of block
prototypes, respectively. Perusing through the current
implementation it can be inferred that the code is overly complex
and convoluted. Many parts of blockfactory are deprecated as well,
making it prudent to integrate a new way of implementing how we
define, generate, and use blocks.

https://github.com/sugarlabs/GSoC/blob/master/Ideas-2021.md#music-blocks-block-graphics-refactoring
https://github.com/sugarlabs/musicblocks/blob/master/js/blockfactory.js
https://github.com/sugarlabs/musicblocks/blob/master/js/protoblocks.js

• Issue 1: The design itself of the current blocks. The current design is
unnecessarily cumbersome and results in poor UI experience once
there are a lot of blocks in a particular project. For instance,

a) The divide block takes up a lot of space
vertically and horizontally both when there are
multiple note value blocks. A minimalistic simple
design going forward can help us in placate this
erratic behavior.

 b) The pitch block as well showcases the same
erratic behavior, here too we can apply horizontal
minimalistic design that helps us save space.

• Issue 2: There should be a clear way to differentiate stale i.e.,

unused blocks and used one. Current implementation fails to
capture this idea. The gist of what I try to convey: -

 <== An implementation of
such kind will help the user
know which blocks are used
and which ones are stale.

• Issue 3: Blocks can have an outline around them whenever they are
selected or dragged around, added to workspace from the toolbar.

• Issue 4: When blocks are connected, they should produce a
connection tone to let the user know of successful task performed.
We can also incorporate “shadow-effect” UI behavior when the
block is just about to connect.

All the above problems and consequent insights shared are primarily
focused on UI only. Other issues as previously discussed for instance,
convoluted codebase pertaining to block generation, artwork creation
handling of multi-touch, issues due to rendering of all blocks on a single
<canvas></canvas> element making the application monolithic will be at
the epicenter of my work during summer.

 The Solution: One of the project task-list deliverables is to come up
with a framework for how the block interconnections will work, make it
more obvious how blocks interlock and use the interlocking to help
define the schemas associated with some block logic. For this, I propose
we use BLOCKLY.
Blockly is an open-source developer library for adding block-based
coding to an app. Blockly provides a block editor UI and a framework for
generating code in text-based languages. Out of the box it includes
generators for JavaScript, Lua, PHP, Dart, and Python etc.

Custom blocks needed for our application can be generated using
blockly-developer-tools and integrated into our app.

Current version of musicblocks has a feature to run midi device on it,
blockly allows us to add blocks and categories dynamically as the scope
of our app expands. If your app uses hardware (midi in this case), we can
only show blocks for the currently attached hardware or let your user
tell you which components they have.

Users will have an easier time with our block language if there is
consistency in our use of language and design patterns. I suggest that
we:
• Use color to reinforce similarities between blocks.
• Use the same sentence structure across blocks.
• Use the same input order when different blocks use the same inputs.
• Use the same word everywhere when referring to the same thing.

https://blockly-demo.appspot.com/static/demos/blockfactory/index.html

Blockly is one of a growing number of visual programming environments. Deciding
which one to use in your app is an important step, so here are a few of Blockly's
biggest strengths to help you make the decision:

• Exportable code. Users can extract their block-based programs to common
programming languages and smoothly transition to text-based
programming.

• Open source. Everything about Blockly is open: you can fork it, hack it, and
use it in your own sites and Android apps.

• Extensible. Tweak Blockly to fit your needs by adding custom blocks for
your API or removing unneeded blocks and functionality.

• Highly capable. Blockly is not a toy. You can implement complex
programming tasks like calculating standard deviation in a single block.

• International. Blockly has been translated to 40+ languages, including right-
to-left versions for Arabic and Hebrew.

A react based blockly workspace sample is also available, upon which we can add
our additional blocks. Once, the wireframe for the new musicblocks is decided,
we can tweak up the workspace tantamount to it. As is, the workspace looks like
this: -

The primary issue with current implementation of block generation in
musicblocks using blockfactory and protoblock is the convoluted nature of it. By
using blockly, that issue is obviated. I created a sample pitch block,

The block generator stub is reduced to just: -

Blockly.JavaScript['pitch_block_demo'] = function(block) {
 var statements_pitch = Blockly.JavaScript.statementToCode(block, 'pitch');
 // TODO: Assemble JavaScript into code variable.
 var code = '...';
 // TODO: Change ORDER_NONE to the correct strength.
 return [code, Blockly.JavaScript.ORDER_NONE];
};

With corresponding json as: -

{
 "type": "pitch_block_demo",
 "message0": "pitch %1",
 "args0": [
 {
 "type": "input_statement",
 "name": "pitch",
 "check": "Number",
 "align": "RIGHT"
 }
],
 "inputsInline": true,
 "output": "String",
 "colour": 300,
 "tooltip": "",
 "helpUrl": ""
}

In addition to the aforementioned benefits of using blockly, I would also like to
propose that we introduce comment feature on individual block stacks. When
creating big projects with musicblocks like Fibonacci, the workspace gets cluttered
and it’s hard to keep a track of all the blocks, what do they do and when will they
be triggered and so on. Also, after a user has saved their project work locally or
even on planet, and if the project is visited after a long time, relying solely on

memory recollection as to which group of blocks does what and when they should
be added and so on is quite cumbersome. Adding a feature to add comments on
blocks will help us obviate this. This feature is already an integral part of all
blockly examples.

As creating a Visual Programming Language with music as an integral part of it is
our goal, we have blockly.games/music as a source of inspiration to peruse. Most
of musicblocks’s features like play a note, rest, set instrument, note-values(c4,d4
etc) work completely fine here.

 Research Sources: -
• Block Design Discussion
• https://developers.google.com/blockly/publications/papers/TipsForCreat

ingABlockLanguage.pdf
• https://developers.google.com/blockly/publications/papers/TenThingsW

eveLearnedFromBlockly.pdf
• Blockly Documentation for developers

 Timeline: -
Since the entire project is about the blocks graphics refactoring, the
timeline should be viewed more in terms of Phases rather than weeks.
Since there is an overhaul of the entire application, I intend to align my
project with other GSOC projects of this year namely: Menus and Palettes,
Blocks Reorganization and debugging aids. I also intend to contribute in
every way I can whenever needed.

https://blockly.games/
https://blockly.games/music?lang=en&level=10
https://github.com/sugarlabs/musicblocks-v4/discussions/25
https://developers.google.com/blockly/publications/papers/TipsForCreatingABlockLanguage.pdf
https://developers.google.com/blockly/publications/papers/TipsForCreatingABlockLanguage.pdf
https://developers.google.com/blockly/publications/papers/TenThingsWeveLearnedFromBlockly.pdf
https://developers.google.com/blockly/publications/papers/TenThingsWeveLearnedFromBlockly.pdf
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools

Pre GsoC: -
• During this time, I’ll try to dive deeper into blockly library and start

developing some sample blocks, get their UI approved by mentors.
• Once, the UI of blocks is approved by mentors, I’ll start integrating it

into react-blockly sample workspace as shared above.

Phase 1: -

• Week 1-2(June 7, 2021- June 21, 2021)
Start with an extensive discussion with mentors and the community,
especially those with a musical background about what behavior is
expected from the new version of music blocks and blocks graphics.

• Week 3(June 21, 2021 – June 28, 2021)
Come to an agreement with mentors on features, design, and UI of all the
blocks.

• Week 4(June 28, 2021 – July 5, 2021)
Implement the finalized features and get a feedback on the same. If any
changes, implement them and then start working on the remaining blocks.

Milestone Reached: Phase 1 Evaluation

Phase 2: -

• Week 5-8(June 5, 2021 – August 2, 2021)
Discussion and work on the rest of the blocks that remain, integrate
features like commenting, collapse etc. Add necessary plugins as well.
Add generation of corresponding JavaScript feature as well.

• Week 9-10(August 2, 2021 – August 16, 2021)
Cleanup and testing of all the blocks mostly.

Milestone Reached: Phase 2 Evaluation

Post GsoC: -

• Mostly Complete working on the idea.
• Contribute to other akin projects-ideas for musicblocks and continue

contributing to the new application’s both core engine and UI.

https://github.com/sugarlabs/GSoC/blob/master/Ideas-2021.md#music-blocks-block-graphics-refactoring

How many hours will you spend each week on your project?
Amidst the pandemic, all my classes are being conducted online with option to
view recorded lectures. This allowance allows me to have a flexible time schedule
throughout the day. There will be only 1 exam this semester from 17 May 2021–5
June 2021 (probably online as cases are on the rise in India). After exams, I have
2 months of vacations and hence, I’ll be able to devote a lot of time to GsoC. I can
easily devote up to 30-35 hours a week.

Other than this project, I have no other commitments or vacations planned for
the summer. I shall keep my status posted to all the mentors and community
members on a weekly basis and maintain transparency in this project.

If you will be off-the-grid for a few days, then mention those in the
timeline.
Since I am in my junior year, I don’t have any commitments during the period and
so I will be available for almost all of the time frame. Furthermore, I do not have
any planned vacations or other engagements.

How will you report progress between evaluations?
In between evaluations, I am reachable anytime through Email, Matrix, Slack or a
well-planned video session if required.
Further, the nature of this project is as such that I’ll be continuously working on
Github issues, interacting with one or more mentors, starting discussions
whenever needed. I’ll let them know of the progress then and there.

Discuss your post GSoC plans. Will you continue contributing to Sugar
Labs after GSOC ends?
I have learnt a lot and picked up most of my skills by contributing to sugarlabs’s
projects over the winter and, I plan on continuing my contributions to this
organization, by adding to my past projects and working on open issues. With the
community growing continuously, I feel responsible for all the projects I’m a part

of. Having picked up a lot of developing skills, my major focus would be to
develop mentorship skills so that I can give back to this community by helping
other people navigate around and reviewing their contributions.

Till now, the highlight of my experience with Sugar Labs has been the active
involvement of the mentors. With the community growing continuously, I feel
responsible for the projects I contribute to. Having picked up a lot of development
skills, my major focus after GSoC would be to enhance my mentorship skills so
that I can give back to this community by helping other people navigate around
and hope to mentor future GSoC students.

Comments: - Irrespective of the proposal being selected or not, I’d like to get
some suggestions on my proposal, and on how I can improve it. Thank you!

Looking forward to contributing to Music Blocks this summer

	Development Environment :
	My projects:

