
Sugarizer School Portal - GSOC 2020

Sugarizer School Portal

About Me

Name: Kumar Saurabh Raj

Email: kumarsaurabhraj.sr@gmail.com

Github: https://github.com/ksraj123

Location: Patna, Bihar, India

Time Zone: UTC +5:30

Working Hours: 9:00 AM to 11:00 AM, 11:30 AM to 1:30 PM, 3:00 PM to 6:00 PM,

8:00PM to 11:00 PM. Working hours can be adjusted if required and I

have no issues working outside my normal working hours.

Degree: Bachelor of Technology(B. Tech)

Major: Computer Science and Engineering

Institute: Bhagalpur College of Engineering, Bhagalpur

Motivation to take Part in Google Summer Of Code?

I feel like I have learnt more in the past few months preparing and contributing for

GSOC than I would have learnt the entire year before that. Contributing to open source

is a great way to grow as a developer and GSOC is a perfect platform which connects

students willing to learn with experienced mentors. I like challenges, I sometimes spend

hours figuring out what might be the reason for a bug or how to make something work

and at the end of the day, I love that feeling when I figure it out even if I don't, I get to

learn so much through it. I love it and I want to keep doing this.

Why did you choose Sugarlabs?

As a developer I want my code to matter. I want to code to be a part of something which

empowers people and makes an impact. I feel that a child has unlimited potential and

mailto:kumarsaurabhraj.sr@gmail.com
https://github.com/ksraj123

Sugarizer School Portal - GSOC 2020

he can grow up to be anything. Sugarlabs softwares are used by children and

educators. It feels nice to think that what I am developing will be used by a child

somewhere.

Why do you want to work on the particular project?

I have some prior experience working the technologies used in this project and reading

through all of the ideas I felt like this one provides the greatest opportunity to learn. Also

I love sugarizer, I think it would have been fun to have it as a child and this project is

basically about bringing sugarizer to more people, that gets me excited.

What are your expectations from us during and after successful completion of

the program?

I expect to be mentored by the assigned mentors and the rest of the community. I

expect the mentors to review my work and provide feedback or suggestions. Mentors

have a lot more experience than me so I would like to them to guide me if I get stuck

somewhere.

Skills: Javascript, React, Node.js, express, MongoDB, Redis, Docker, Ansible,
Kubernetes, Helm, Google Cloud Platform, Google Kubernetes Engine

Work Done on the Idea So Far

● A helm chart created for sugarizer-server which installs sugarizer-server onto the
Google Kubernetes Engine. An nfs server is created which uses gce persistent
disks to provide data persistence or statefulness. Links to a working deployment
on GKE using this chart can be found in the Readme section of the repository.
Link :- https://github.com/ksraj123/sugarizer-server-chart

● An Ansible package is created which creates a new cluster on Google
Kubernetes Engine and installs our application itself and its dependencies.
Link :- https://github.com/ksraj123/sugarizer-server-k8s-ansible

● Backend for a functional super admin console is created using which the super
admin will be able to add a new deployment, approve deployment requests,

https://github.com/ksraj123/sugarizer-server-chart
https://github.com/ksraj123/sugarizer-server-k8s-ansible

Sugarizer School Portal - GSOC 2020

destroy deployments, add or remove resources from a deployment or the cluster.
UI and bug fixes will be completed in Early April. Once the ui is complete the
demo project will be deployed on GKE and links to the same will be provided in
the Readme section of the repository.
Link :- https://github.com/ksraj123/sugarizer-school-portal

Contributions to Sugarlabs

Pull Requests

● FullScreen UnFullScreen Button added to Video Viewer activity

● Improvements to fullscreen functionality

● [Issue #680 fix] Added replay functionality to Abecedarium activity

● Issue #675 fixed Improvements in responsiveness of Pomodoro activity

● tutorial with localization added to stopwatch activity

● Fixing issues in tutorial of game of life activity

● [Issue #686] Simon Mode added to TamTamMicro activity

● FullScreen Unfullscreen button added with resizing functionality

● Added basic circular scrolling to restricted mode sugar spiral

● fixed redundant scrollbar and added space below submit in sub activities

● Tutorial added to Tank Operation activity

Issues

● Abecedarium Activity not working on mobile resolutions in file:///

● Improvements to navigation in Restricted mode of Spiral

● Proposal for new sugarizer activity - I know my world

https://github.com/ksraj123/sugarizer-school-portal
https://github.com/llaske/sugarizer/pull/629
https://github.com/llaske/ExerciserReact/pull/96
https://github.com/llaske/sugarizer/pull/681
https://github.com/llaske/sugarizer/pull/676
https://github.com/llaske/sugarizer/pull/636
https://github.com/llaske/sugarizer/pull/669
https://github.com/llaske/sugarizer/pull/687
https://github.com/llaske/ExerciserReact/pull/94
https://github.com/llaske/sugarizer/pull/658
https://github.com/llaske/ExerciserReact/pull/95
https://github.com/llaske/sugarizer/pull/630
https://github.com/llaske/sugarizer/issues/684
https://github.com/llaske/sugarizer/issues/657
https://github.com/llaske/sugarizer/issues/712

Sugarizer School Portal - GSOC 2020

● Position of Toolbar buttons wrong at mobile resolution

● Issues in game of life activity

● No space below submit button in multiple sub activities

● Responsiveness issue in Pomodoro Activity

Other projects:-

● myUniversityHackathon:- It is a web application developed using Node.js,
MongoDB and jQuery. It has been used as a template by a few universities in my
region to build their own hackathon websites. We conducted a hackathon in my
university with this website and deployed it on the Google Cloud Platform.
link - https://github.com/ksraj123/myUniversityHackathon

● Multiplayer Chess Sugarizer Activity:- A multiplayer chess activity was
developed for sugarizer using Vue and presence to provide multiplayer support.
Completion for this activity was also a qualification task for some Ideas but not
for the particular Idea I am applying to, hence I did not submit a PR. I also
completed the PAWN activity to learn about how sugarizer works under the
hood.
chess activity - https://github.com/ksraj123/sugarizer/tree/someWorkingChess
pawn activity - https://github.com/ksraj123/sugarizer/tree/pawnActivity

● RAW12-to-bitmap-AVI :- C++ - Sensors used in digital cameras lack the ability to
capture color images as they lack the ability to distinguish how much of each
color they are receiving. To capture color images a filter is placed above the
sensor which permits only a particular color light at each sensel but as a result of
this, each sensel has intensity values of only one channel which is not sufficient
to produce a color image. Hence different demosaicing algorithms are used to
obtain full-color RGB images from RAW images.
link - https://github.com/ksraj123/RAW12-to-bitmap-AVI

https://github.com/llaske/ExerciserReact/issues/98
https://github.com/llaske/sugarizer/issues/668
https://github.com/llaske/ExerciserReact/issues/97
https://github.com/llaske/sugarizer/issues/675
https://github.com/ksraj123/myUniversityHackathon
https://github.com/ksraj123/sugarizer/tree/someWorkingChess
https://github.com/ksraj123/sugarizer/tree/pawnActivity
https://github.com/ksraj123/RAW12-to-bitmap-AVI

Sugarizer School Portal - GSOC 2020

About the Idea -

Sugarizer School Portal is a new tool to help schools interested in hosting and
managing their own sugarizer deployment themselves without much technical
knowledge. The sugarizer-server will be deployed as a web application onto a
kubernetes cluster which can be accessed over the internet as a SaaS (Software as a
service). The super administrator will create the cluster and approve deployment
requests. The Sugarizer School Portal comprises mainly two parts the Super Admin
console and the School Console. The schools can request for a deployment for
themselves with the school console. The super admin (owner of the cluster) will interact
with the Super Admin Console to approve deployment requests and monitor resources
or change resource allocations. The idea behind this project is to make sugarizer
accessible to more institutions. So any task which might require much technical know
how like interacting with the cluster, creating new nodes, scaling etc is abstracted
through the application so that it can be done by a few clink on the user interface. The
application is designed to be user friendly and economic to host so that any interested
organization like a charity, ngo, schools, orphanage etc can have their own cluster and
enable other institutions around them to use sugarizer.

Getting Sugarizer-Server Kubernetes Ready

I have created a helm chart for installing sugaizer-server. The current approach is very
non-invasive and as little of the existing code is changed as possible. However many
changes and adaptations are needed to make the sugarizer-server work properly when
deployed onto a kubernetes cluster. Some of the issues observed with sugarizer-server
are -

● Handling Sessions across multiple pods

When there are more than one instances of the sugarizer-server in the cluster
then on logging in the user gets redirected to the login page. Currently
sugarizer-server does not use any session store and in express-session the
default value of store is MemoryStore i.e. the sessions are stored in memory.
When there are more than one pods then the request may be routed to any pod
and one pod is not aware of a session stored in another pod’s memory. This
probably might be the reason for this issue and could be fixed by using a session
store common to all pods on a central database.

Sugarizer School Portal - GSOC 2020

● Handling upgrades

Currently in sugarizer-server not much data is actually present inside the
container, various links mount directories in the container to volumes on the host.
This would not work well in a kubernetes environment as pods and nodes are
ephemeral, they keep on getting destroyed and regenerating. Also if a new
version of sugarizer-server is released then there won't be a simple way to
upgrade the entire cluster but to upgrade every storage location which has the
application’s code individually. Hence an image of sugarizer-server will be
created which will contain all the Node.js application code within it so that in case
of a future release all the pods can be easily updated in rolling fashion using
helm upgrade command by upgrading the image to the new image.

● Handling Statefulness and Database

Data persistence is an issue in any kubernetes deployment. Currently
sugarizer-server stores its database files onto the host which would again not
work well on kubernetes as the request can be routed to any pod and database
files inside the pods will not be in sync. Various approaches to handle this have
been discussed in the following sections.

Sugarizer Server Chart - Implementation

In this section we will go over some implementation details of the sugarizer server chart
and how sugarizer is made to work in kubernetes.

#sugarizer-chart/namespace.yaml

kind : Namespace

apiVersion : v1

metadata :

 name : {{ .Values.school.Id }}

 labels :

 name : {{ .Values.school.Id }}

All the Kubernetes objects of our chart will be created inside the namespace which will
be passed in from the command line using the --set flag. The command will actually get
executed by an ansible playbook executed by our application. So ultimately a unique
school Id will be generated for each school which will be its namespace.

templates/server_deplyment.yaml - deploys the sugarizer server

Sugarizer School Portal - GSOC 2020

apiVersion : apps/v1

kind : Deployment

metadata :

 name : school-deployment

 namespace : {{ .Values.school.Id }}

spec :

 replicas : {{ .Values.server.replicas }}

 selector :

 matchLabels :

 app : {{ template "sugarizer-chart.fullname" . }} -pod

 template :

 metadata :

 labels :

 app : {{ template "sugarizer-chart.fullname" . }} -pod

 school : {{ .Values.school.Id }}

 spec :

 volumes :

 - name : my-pvc-nfs

 persistentVolumeClaim :

 claimName : nfs

 containers :

 - name : sugarizer-server

 image : {{ .Values.server.image }}

 volumeMounts :

 - name : my-pvc-nfs

 mountPath : /sugarizer-server

 subPath : sugarizer-server

 - name : my-pvc-nfs

 mountPath : /sugarizer-client

 subPath : sugarizer-client

 command : ["/bin/sh" , "-c"]

 args :

 - apt-get update; apt-get install sudo; sudo apt install git -y;

 {{ .Values.client.setupCommands }}

 {{ .Values.server.setupCommands }}

 sh ./add-admin.sh admin password http://127.0.0.1:80/auth/signup;

 env :

 - name : NODE_ENV

 value : docker

 - name : MONGO_URL

Sugarizer School Portal - GSOC 2020

 value : mongodb://{{ template "mongodb.fullname" .

}}-service.{{.Values.school.Id}}.svc.cluster.local:{{ .Values.database.port }}/

 ports :

 - containerPort : {{ .Values.server.httpPortPod }}

 name : http

 - containerPort : {{ .Values.server.presencePort }}

 name : presence

The most important thing in our server-deployment file is the environment variable
MONGO_URL we do not have the mongo container in the same pod as the
sugarizer-server container so to connect to a mongodb pod on our cluster the using a
clusterIp service the url should be in the form of <service_name>.<namespace>.svc
.cluster.local. The code in sugarizer-server has to be modified to use the environment
variable in instead of localhost url if it is defined.

Here is what the manifest file for deploying mongoDb and the clusterIP service for
accessing it from our sugarizer-server pods might look like -

templates/mongo-deployment.yaml

apiVersion : apps/v1

kind : Deployment

metadata :

 name : {{ template "mongodb.fullname" . }} -deployment

 namespace : {{ .Values.school.Id }}

spec :

 replicas : 1

 selector :

 matchLabels :

 app : {{ template "mongodb.fullname" . }} -pod

 template :

 metadata :

 labels :

 app : {{ template "mongodb.fullname" . }} -pod

 spec :

 volumes :

 - name : my-pvc-nfs

 persistentVolumeClaim :

 claimName : nfs

 containers :

 - name : mongodb

Sugarizer School Portal - GSOC 2020

 image : {{ .Values.database.image }}

 volumeMounts :

 - name : my-pvc-nfs

 mountPath : /data/db

 subPath : sugarizer-server/docker/db

 command : ["/bin/sh" , "-c"]

 args : ["mongod --repair; mongod"]

 env :

 - name : AUTH

 value : "no"

 ports :

 - name : mongodb

 containerPort : {{ .Values.database.port }}

 hostPort : {{ .Values.database.port }}

 protocol : TCP

apiVersion : v1

kind : Service

metadata :

 name : {{ template "mongodb.fullname" . }} -service

 namespace : {{ .Values.school.Id }}

spec :

 ports :

 - port : {{ .Values.database.port }}

 targetPort : {{ .Values.database.port }}

 protocol : TCP

 selector :

 app : {{ template "mongodb.fullname" . }} -pod

Sugarizer School Portal - GSOC 2020

Design

● Different components of our application will live in different namespaces in the

same cluster. Resource limits will be placed on namespaces to determine what
part of entire resources available to the cluster can a component use.

● The entire application has three main components:-

○ Sugarizer School Portal
○ Sugarizer Deployment Namespaces
○ Monitoring namespace

● The Super admin has the following jobs:-

○ Setting up the cluster for the first time
○ Approving Deployment Requests or Create new Deployment
○ Deleting or Destroying Deployments
○ Changing resources allocated to a deployment

Sugarizer School Portal - GSOC 2020

○ Adding or Removing resources from a cluster
○ Adding new Clusters
○ Monitor sugarizer deployments and Cluster
○ Add more super administrators.

● The school admin has the following jobs:-

○ To request for a new deployment on the School console.
○ To create accounts for more school admins.

● The sugarizer school portal too will live in its own namespace on the cluster. it

will have two parts:-
○ Super admin console :- The super admin console abstracts cluster

management, resource allocation and monitoring by providing options in
the user interface to perform those tasks.

○ School Console :- Using the school console the school admins will be able
to request new deployment for their school. They could also login to view
information about their deployment, request more resources, add more
school admins for their deployment and request contact super admins for
support.

● Let's briefly go over how the application will work :-

○ The Super Admin will do the first time setup by executing an ansible

package which will automatically do the following tasks: -
■ Create a new kubernetes cluster
■ install the sugarizer school portal application on it
■ Install NGINX Ingress Controller
■ install prometheus in a new namespace

It is discussed in greater depth in the following sections

○ The super admin console will execute various playbooks using the
node-ansible package to connect to the cluster and perform operations on
it depending upon super admin’s interaction with the UI. Technical details
of how this will be implemented is discussed in the following sections.

○ Requests from one school will be routed to service of that school’s

namespace by the ingress controller.

○ Each school’s namespace will contain pods running sugarizer-server and
the database. The number of pods will scale automatically to make best
use of available resources for that namespace. This will ensure high
availability.

Sugarizer School Portal - GSOC 2020

○ Pods are ephemeral and the data inside is destroyed as well when the

pod is destroyed. To make the data persistent, In the demo application an
nfs server has been created using gce persistent disks. Traditional nfs
servers provide ReadWriteMany access but they do not make sense
economically for small deployments. Gce persistent disks are cheap and
better suited for small deployments but they support only ReadWriteOnce
or ReadOnlyMany access mode. So an nfs server is deployed in the
cluster which stores data into persistent disks to get ReadWriteMany
Access mode. Various approaches to handle statefulness have been
discussed in the following sections. Out of the discussed approaches
using stateful stateful sets or gce persistent disk nfs server seem to be
good choices.

○ The super admin console will fetch metrics from the prometheus HTTP
API and display graphs to helm monitor various namespaces and the
cluster itself. The super admin will decide to adjust resource limits of a
deployment or add resources to the cluster.

○ The super admin can add more super admins and there can be many

school admins. So the need for a redis based real time publish subscribe
relationship will be explored.

First Time Setup

First Time Setup refers to the steps the Super Administrator has to take to set up the
kubernetes cluster and deploy the Sugarizer School Portal application on it. The super
admin will be able to perform tasks like creating new sugarizer-server deployments,
approving deployment requests, managing resources for existing deployments etc on
the Sugarizer Server Portal application.

The schools can request for deployments which will be done on the cluster provided by
sugarlabs but they should be able to make it work on their own cluster if they want to.
Apart from this it's in the spirit of open source to enable anyone like a university, charity
or a similar organization to make their own cluster and help other schools to host their
sugarizer-server deployment with as little technical knowledge as possible. Hence the
First Time Setup and the Super Admin console will be made such that it can be handled
with very basic technical knowledge.

An ansible package has been created which will install google cloud sdk, create a new
kubernetes cluster, connect to the cluster, install helm 3 and install the helm chart for

Sugarizer School Portal - GSOC 2020

Sugarizer School Portal and will provide a link using which the the web ui of the super
admin console could be accessed. A shell script will be created for installing all the
dependencies for the ansible package.

The super administrator will have perform the following tasks before executing the
playbook -

● Start a project on Google Cloud Platform and note down details like project id,
zone etc.

● Enable kubernetes API for the project.
● Generate a service account file (account.json) and paste it into the root directory

of the playbook.
● Execute a script which will install dependencies like python, pip, google-auth,

ansible etc.
● Set Values in the values file of the ansible package.

Here is how the directory structure of the first time setup ansible package looks like -

Lets go over the important aspects of the package-

host_vars/localhost

auth_kind : serviceaccount

service_account_file : # serviceAccountKey file for verifying and identifying google account

project : # Enter the Google Cloud Platform project id here

cluster_name : # enter name of cluster, suggested value - name of

school

initial_node_count : # number of nodes in the cluster initially

Sugarizer School Portal - GSOC 2020

username : # username for accessing cluster master endpoint

password : # password for accessing cluster master endpoint

zone : # set the zone in which the cluster is to be created

machine_type : n1-standard-1

disk_size_gb : 100

gke node pool

npname : gkeclus-pool

np_initial_node_count :

Here is what the master playbook looks like -

Master playbook - should be executed for first time setup

- import_playbook : create-new-cluster.yml

- name : Installing the Google Cloud Sdk

 import_playbook : install-gcp-sdk.yml

- name : Installing Helm

 import_playbook : install-helm.yml

- name : Installing Sugarizer School Portal Helm Chart

 import_playbook : install-sugarizer-chart.yml

install-gcp-sdk playbook makes use of a standard role provided by ansible -
https://github.com/ansible/role-install-gcloud and the create-new-cluster makes use of
standard modules provided by google gcp_container_cluster and gcp_node_pool

roles/create-cluster/tasks/main.yml

- name : create a cluster

 gcp_container_cluster :

 name : "{{ cluster_name }}"

 initial_node_count : "{{ initial_node_count }}"

 master_auth :

 username : "{{ username }}"

 password : "{{ password }}"

 node_config :

 machine_type : "{{ machine_type }}"

 disk_size_gb : "{{ disk_size_gb }}"

 zone : "{{ zone }}"

 project : "{{ project }}"

https://github.com/ansible/role-install-gcloud

Sugarizer School Portal - GSOC 2020

 auth_kind : "{{ auth_kind }}"

 service_account_file : "{{ service_account_file }}"

 scopes :

 - https://www.googleapis.com/auth/cloud-platform

 state : present

 register : cluster

- name : create a node pool

 gcp_container_node_pool :

 name : "{{ npname }}"

 initial_node_count : "{{ np_initial_node_count }}"

 cluster : "{{ cluster }}"

 zone : "{{ zone }}"

 project : "{{ project }}"

 auth_kind : "{{ auth_kind }}"

 service_account_file : "{{ service_account_file }}"

 scopes :

 - https://www.googleapis.com/auth/cloud-platform

 state : present

Super Administrator - Jobs - Implementation.

In this section we will look at the various jobs the super administrator will be able to
perform using the super admin console and how they will be implemented technically.
The admin console Node.js application interacts with the cluster by executing Ansible
playbooks using npm node-ansible package. The details about the project itself
project_Id, zone etc will be provided by the super administrator during the first time
setup in the Ansible values file and they will be passed to the admin console Node.js
application as environment variables and will eventually be stored in the database. The
super administrator has the following jobs -

Approving Deployment Requests or Creating new Deployments

The super administrator will receive deployment requests from schools. He will review
them and can either approve or reject them. He can also create a new deployment
without any prior request. Technical implementation of both will be similar, the only
difference being that the source of information which is a form in the admin console app
while creating a new deployment or request by school admin in the case of approving
deployments. Here is a how this might be implemented -

Sugarizer School Portal - GSOC 2020

// superAdminConsole/createNewDeployments.js

var Ansible = require ('node-ansible');

module . exports = function createNewDeployment (cluster , school , project){

 var config = {

 project: process . env . PROJECT_ID || project . project_Id ,

 zone: process . env . PROJECT_ZONE || project . zone ,

 cluster_name: cluster . name ,

 schoolId: school . Id

 }

 var command = new

 Ansible . Playbook (). playbook ('./ansible/new-school-deployment'). variables (config);

 var promise = command . exec ();

 promise . then (function (result){

 // playbook successfully finished execution

 var getJson = new

Ansible . Playbook (). playbook ('./ansible/get-external-ip'). variables (config);

 getJson . exec (). then (function (jsonRes){

 // external IP is allocated after a few minutes of successful installation

 // so few minutes pause added to external ip playbook

 var getJson = new

Ansible . Playbook (). playbook ('./ansible/get-external-ip'). variables (config);

 getJson . exec (). then (function (jsonRes){

 var res = jsonRes . output . slice (jsonRes . output . indexOf ('{'),

jsonRes . output . lastIndexOf ('}')+ 1);

 res = JSON . parse (JSON . parse (res). json . stdout_lines . reduce ((acc , curr) =>

acc + curr , ""));

 console . log (̀External Ip = ${ res . status . loadBalancer . ingress [0]. ip } ̀);

 }). catch (function (err){

 console . log (err);

 })

 }). catch (function (err){

 console . log (err);

 })

 }). catch (err => {

 console . log (err);

 })

}

Sugarizer School Portal - GSOC 2020

The above code uses the node-ansible package to execute the new-school-deployment
playbook under the ansible directory in our application. When the execution is finished
the promise is resolved and upon successful execution another playbook get-external-ip
is executed and the external ip is retrieved from its result after some operations which
will be used for accessing the newly created sugarizer-server deployment. Since it
takes a few minutes for the external ip to be allocated I have added a few minutes
pause to the get-external-ip playbook.

Let's have a look at new-school-deployment and get-external-ip playbooks:-

Ansible/new-school-deployment.yaml

- hosts : localhost

 tasks :

 - name : connecting to cluster

 shell : gcloud container clusters get-credentials {{cluster_name}} --zone {{zone}}

--project {{project}}

 - name : creating new gcp persistent disk

 shell : gcloud compute disks create --size=10GB --zone={{zone}} {{schoolId}}

 - name : installing sgarizer-server chart

 shell : helm install {{schoolId}} ./sugarizer-chart --set school.Id={{schoolId}}

Values passed through the variables function of our node-ansible playbook object is
equivalent to providing values from the command line using -e flag so it overrides any
values from ansible values files. Script for installing google cloud sdk will be provided in
the pod specification of super admin console deployment manifest so that every time a
pod is created, it has google cloud sdk installed so the gcloud command can be used
directly. In the demo application to handle statefulness a nfs server is created which
stores data on a gce persistent disk hence it is created and the nfs-server deployment,
persistent volumes, persistent volume claims and related services are created with
chart installation. The school.Id will be unique for all schools and is used in the naming
of many resources and all the kubernetes resources are created in that namespace.

Ansible/get-external-ip.yaml

- hosts : localhost

 tasks :

 - pause :

 minutes : 5

 - name : connecting to cluster

 shell : gcloud container clusters get-credentials {{cluster_name}} --zone {{zone}}

--project {{project}}

 - name : scaling the deployment

 shell : kubectl get service {{schoolId}}-service --namespace={{schoolId}} -o json

Sugarizer School Portal - GSOC 2020

 register : json

 - set_fact :

 marker : $marker$

 - debug :

 var : json

By executing these two playbooks with different school ids new deployments can be
created.

Delete or Destroy Deployments

The super admin should have the ability to delete or destroy the sugarizer deployment
of a school. It can be done by executing a playbook and passing in the school id of the
deployment from our super admin console application.

Ansible/destroy-school-deployment.yaml

- hosts : localhost

 tasks :

 - name : connecting to cluster

 shell : gcloud container clusters get-credentials {{cluster_name}} --zone {{zone}}

--project {{project}}

 - name : deleting helm release

 shell : helm delete {{schoolId}}

 - name : Force Deleteing pods

 shell : kubectl delete --all pods --namespace={{schoolId}} --grace-period=0 --force

 - pause :

 minutes : 1

 - name : deleting gcp pd

 shell : gcloud compute disks delete {{schoolId}} --zone={{zone}} -q

Sometimes the pods get stuck in a terminating state so a force deletion step is included
in the playbook. In our sample application the gce persistent disk is deleted after a
small pause to ensure all the resources using it are completely deleted by the time its
deletion is attempted to avoid any errors.

Adding new Clusters

The super administrator will be able to add a new cluster. However, the application is
primarily designed to make use of a single cluster for multiple sugarizer deployments
which will be separated by different namespaces. This makes managing deployments
and automating tasks on them easier and is also beneficial economically. There is an
incoming pricing policy change by Google according to which starting June 6, 2020 all
clusters irrespective of their size will be charged a flat maintenance fee of $0.1 per

Sugarizer School Portal - GSOC 2020

cluster per hour. However one zonal cluster will be provided free of charge. More details
about this can be found here - https://cloud.google.com/kubernetes-engine/pricing
So if the application is designed to work well using a single cluster then this would be
especially beneficial for schools willing to have their own cluster. To add a new cluster
the following playbook will be executed by the super admin app -

Ansible/scale-deployment.yaml

- hosts : localhost

 tasks :

 - name : connecting to cluster

 shell : gcloud container clusters create {{cluster_name}} --zone {{zone}}

Change resources allocated to a deployment

The super admin should be able to change the number of replicas of a deployment. The
more replicas a school has, the more resources it will consume. Here is a sample
playbook which can be executed from the super admin console application to change
the number of replicas by passing in the new number of replicas and school Id.

Ansible/scale-deployment.yaml

- hosts : localhost

 tasks :

 - name : connecting to cluster

 shell : gcloud container clusters get-credentials {{cluster_name}} --zone {{zone}}

--project {{project}}

 - name : scaling the deployment

 shell : helm upgrade {{schoolId}} ./sugarizer-chart --set

server.replicas={{scale}},school.Id={{schoolId}}

However this will not be controlled manually and horizontal pod autoscaling will be set
up. The sugarizer deployments of different schools will live in different namespaces on
our cluster and the resources will be split between them. With horizontal pod
autoscaling the pods will automatically scale up or down to make desired usage
resources allocated to a namespace. Resource quotas can be set up to limit the
resources used by namespace. Total amount of resources in the cluster can be figured
out with the type of machines (for example an n1-standard-1 machine has 1 vCPU and
3.75GB of Memory) and the number of nodes. Quotas allocated to each sugarizer
deployment (namespace) will be kept track of by the app and will be adjusted as per
requirement. The pods in a namespace will undergo horizontal auto scaling to utilize
around 70 to 80 percent of quota limit. Auto scaling will also be performed on resources
other than compute resources whose metrics will be retrieved from Prometheus.

https://cloud.google.com/kubernetes-engine/pricing

Sugarizer School Portal - GSOC 2020

Add or Remove resources from a cluster

On the Google Kubernetes Engine(GKE) platform the cost of the cluster is linked to the
number of GCP VMs or nodes it has. So the super admin should have control over the
number of nodes. GKE provides support for auto scaling nodes which can be
implemented after discussion with mentors. The super admin will monitor the cluster
resources and if the need be then he may add nodes to relieve the load on the cluster.
However existing pods will not be automatically rescheduled on new nodes and the new
nodes will be used for scheduling new pods. To balance load across the cluster and
ensure better availability this should be avoided, a simple approach to handle this could
be to downscale the deployments and then upscale them after the cluster is resized.

Here is a playbook which might be executed from the super admin app by passing in
details about the project and cluster into the variables function of the node-ansible
playbook object.

Ansible/resize-cluster.yaml

- hosts : localhost

 tasks :

 - name : connecting to cluster

 shell : gcloud container clusters get-credentials {{cluster_name}} --zone {{zone}}

--project {{project}}

 - name : resizing the cluster

 shell : gcloud container clusters resize {{cluster_name}} --node-pool {{npname}}

--num-nodes {{new_cluster_size}}

Monitoring Cluster And Deployments

The super admin will be able to view utilization of resources by a specific sugarizer
deployment (namespace) and utilization of resources of the entire cluster depending
upon which he either adjusts resource allocation to a deployment or modify resources
of the cluster itself.
Strings written in a query language called PromQL are used to extract data from
Prometheus. To make this user friendly, we will use the Prometheus HTTP API and
With the data retrieved either graphs can be plotted using some plotting library or
Grafana can be embedded into the application which will provide beautiful automatically
refreshing graphs and it integrates well with prometheus. Both the options will be
explored and tested. Sugarizer Deployment of different schools will be inside different
namespaces in our cluster. Resources consumed by one namespace will be managed
by resource quotas. The Super Admin console app will keep track of resource quota
values assigned to different namespaces (sugarizer deployments) and update them as
required. Prometheus and Graphana will be used for monitoring.

Sugarizer School Portal - GSOC 2020

Handling Statefulness - Implementation and
Discussions

Approaches for statefulness with mongoDB as database :-

➔ A simple approach could be to use Google Filestore nfs and mounting the location

inside the pods to it. However Google Filestore is meant to handle large file
systems as the smallest possible capacity is 1 TB which is more than what most
schools would need. This approach is not favourable economically as well, the
price of 1GB in standard tier is $0.2/month which comes to a minimum of
$200/month for storage. We could store database files from multiple schools in the
same filestore volume to make this economically viable but it would still not make
sense for schools interested in having their own cluster. Also the performance
might suffer with multiple deployments fetching and writing data to the same
volume.

➔ Another approach could be to use gcp persistent disks with StatefulSets. In our

StatefulSet multiple pods will be linked together in a single master multi slave
configuration. The slaves will replicate data from the master. Read operations can
be done from either master or slave but write operations are done only to the
master. If the master fails then one of the slaves takes its place through the
process of election. Ssd based gce persistent disks will be linked to each pod for
storing its data. The price per GB per month of a ssd gce persistent disk is $0.17
so if we have 9 pods in our StatefulSet each linked to 10GB ssd persistent disk
the monthly cost would be only around $15.

This StatefulSet will go along with a StorageClass which will create ssd gce
persistent disk voluments upon request from the StatefulSet. A headless service
will also be created so connection can be made individually to the pods.

kind : StorageClass

apiVersion : storage.k8s.io/v1beta1

metadata :

 name : ssd-gcePd

provisioner : kubernetes.io/gce-pd

parameters :

 type : pd-ssd

https://cloud.google.com/filestore/pricing

Sugarizer School Portal - GSOC 2020

apiVersion : v1

kind : Service

metadata :

 name : mongodb

spec :

 ports :

 - port : {{ .Values.database.port }}

 targetPort : {{ .Values.database.port }}

 clusterIP : None

 selector :

 app : mongodb

There is a standard helm chart available from helm itself for implementing this approach
which can be tweaked to suit our needs.
https://github.com/helm/charts/tree/master/stable/mongodb-replicaset

Here is what a simple Mongo StatefulSet for this approach might look like -

apiVersion : apps/v1beta1

kind : StatefulSet

metadata :

 name : mongodb

spec :

 serviceName : "mongodb"

 replicas : {{ .Values.database.replicas }}

 template :

 metadata :

 labels :

 app : mongodb

 spec :

 terminalGracePeriodSeconds : {{ .Values.database.terminalGracePeriodSeconds }}

 containers :

 - name : mongodb-pod

 image : {{ .Values.database.image }}

 command :

 - mongod

 args :

 - replSet={{ .Values.database.replicaSetName }}

 ports :

 - containerPort : {{ .Values.database.port }}

 volumeMounts :

 - name : mongodb-persistent-storage

 mountPath : /data/db

https://github.com/helm/charts/tree/master/stable/mongodb-replicaset

Sugarizer School Portal - GSOC 2020

 VolumeClaimTemplates :

 - metadata :

 name : mongodb-persistent-storage

 annotations :

 volume.beta.kubernetes.io/storage-class : "ssd-gcePd"

 spec :

 accessMode : ["ReadWriteOnce"]

 resources :

 requests :

 storage : {{ .Values.database.gcepdSize }}

➔ Another approach could be to create a seperate NFS file server for each
school on the cluster using gce persistent disks. This approach has the
benefits of NFS file servers like ease of use while still keeping the costs very
low as it uses gce persistent disks. I have used this approach in the demo
application.

 Here is how the deployment for nfs server might look like :-
before this chart is installed a a gce persistent disk will be created by

the Ansible playbook with the following command

gcloud compute disks create --size=10GB --zone=us-east1-b <Name of gcePd>

apiVersion : extensions/v1beta1

kind : Deployment

metadata :

 namespace : {{ .Values.school.Id }}

spec :

 replicas : {{ .Values.nfs-replicas }}

 selector :

 matchLabels :

 app : nfs-server

 template :

 metadata :

 labels :

 app : nfs-server

 spec :

 containers :

 - name : nfs-server

 image : gcr.io/google_containers/volume-nfs:0.8

 ports :

 - containerPort : 2049

 - containerPort : 20048

 - containerPort : 111

 securityContext :

Sugarizer School Portal - GSOC 2020

 privileged : true

 volumeMounts :

 - mountPath : /exports

 name : gce-persistent-disk

 volumes :

 - name : gce-persistent-disk

 gcePersistentDisk :

 pdName : {{ .Values.school.Id }}

 fsType : ext4

This nfs server is used by creating a persistent volume which refers to it as an
nfs: using its cluster IP service which will also be created. Since persistent
volumes are outside the scope of namespaces, the school Id which will be
unique for every school is used for naming the pv. Here is how it might look
like:-

apiVersion : v1

kind : PersistentVolume

metadata :

 name : {{ .Values.school.Id }}

spec :

 capacity :

 storage : 10Gi #capacity of the nfs server

 accessModes :

 - ReadWriteMany

 nfs :

 server : #<service_name>.{{.Values.school.Id}}.svc.cluster.local

 path : "/"

Now gce pd can be consumed by simply creating a PersistentVolumeClaim.
For this approach also a helm chart is already available from helm itself which
can be tweaked to suit our needs.

 https://github.com/helm/charts/tree/master/stable/nfs-server-provisioner

Approaches with a different database than mongoDB -

➔ If we replace mongoDB with a cloud database then the load on the cluster will
reduce as we will not have to run mongo pods and it will simplify the
architecture a lot but this approach may require significant rewriting of
sugarizer-server code. The problem with rewriting code is that it will be time
consuming to incorporate changes in new relases of sugarizer-server to
sugarizer-server used here. Cloud Bigtable and Cloud Firestore and good
options among cloud databases available on the Google Cloud Platform as

https://github.com/helm/charts/tree/master/stable/nfs-server-provisioner

Sugarizer School Portal - GSOC 2020

they provide scale insurance and they are also non-relational databases like
mongodb making rewriting code to use them instead easier.
Here is a link comparing various cloud databases available on Google Cloud
Platform -
https://cloud.google.com/products/databases

In my opinion MongoDB StatefulSet and gce persistent disk NFS approaches are good.
I think the same database should be used on the original sugarizer-server and the one
deployed on the Sugarizer School Portal so that upgrades could be easier. If we have to
change the database then we should change it on the original version as well and go
with either StateSet or gce pd nfs approach. However, this will be decided upon after
discussion with mentors.

Timeline

Duration Tasks

1st - 10th April ● Implement the front end of the Basic Demo

application which will support basic features like

requesting for a new deployment, destroying

deployments and approving deployment requests.

● Learn more about ansible and helm.

● Understand the Sugarizer-Server codebase and

work on making necessary changes to make it

kubernetes ready.

10th - 20th April ● improvements to the demo application UI and

discuss with the mentors how the actual UI might

look like.

● Explore the need of pub/sub and make necessary

changes to the demo application.

● Learn about Google Cloud DNS and Let's Encrypt.

● Continue Working on Sugarizer Server kubernetes

https://cloud.google.com/products/databases

Sugarizer School Portal - GSOC 2020

compatibility.

20th April - 4th May ● Learn more about various monitoring solutions like

Prometheus, Prometheus-operator, grafana,

influxdb etc.

● Work on creating a kubernetes ready standalone

image of the sugarizer server.

4th May - 1st June Community Bonding Period

● Explore the technologies in greater depth.

● Communicate with mentors and other organization

members to receive feedback on the work done so

far, finalize UI, features and learn more about best

practices to follow in a production environment.

● Learn more about the project and how it will be

implemented.

1st June - 8th June ● Implement suggested changes by mentors.

● Complete the UI for the application except for the

Monitoring section.

● Complete Basic functionality like requesting for new

deployments and approving deployment requests.

● Write a Blog

8st June - 15th June ● Start Working on scaling functionality

● Sugarizer Server made completely ready for

kubernetes and a standalone image created.

● Start working on routing through ingress and

integration with cloud dns domain names

● Write a Blog

Sugarizer School Portal - GSOC 2020

15st June - 22nd June ● Scaling functionality Completed

● Routing through Ingress Completed.

● Add functionality to destroy deployments.

● Add functionality to add more super admins.

● Start Working on monitoring.

● Write a Blog

22nd June - 29 June ● Finish The UI of the Super Admin Console

● Add Basic functionality to School Console

● Add functionality to add new admins in the School

Console

● Continue Working on monitoring.

● Start Working on SSL, security encryption and lets

encrypt

● Write a Blog
29 June - 3 July July Phase 1 evaluation

Progress:-
● A basic working version of the application will be

created where the super admin will be able to login

into the super admin console and create more

super admin accounts.

● The super admin will be able to approve

deployment requests, destroy deployments

● Scaling solutions implemented

● Routing implemented

● Domain Integrated

● Write a Blog

3 July - 10 July Will not be able to work probably due to university

exams will compensate for it by working more the

following weeks
10 July - 17 July ● Complete SSL and let's encrypt integration.

Sugarizer School Portal - GSOC 2020

● Integrate monitoring into the super admin console

● Write a Blog
17 July - 27 July ● Completely Integrate Monitoring and resource

administration by the super admin.

● Finish the web interface - both the super admin

console and the school console.

● Write a Blog
27 July - 31 July Phase 2 evaluation

Progress -

● Web interface Completely Implemented

● All Proposed features developed and implemented

● Complete Integration with Let's encrypt, SSL and

Cloud DNS

31 July - 7 August

● Receive Feedback from the mentors and make

requested changes.

● Start working on the final ansible package to install

the application onto GKE.

● Write a Blog
7 August - 14 August ● Implement Feature requests received from the field.

● Create an Image for the sugarizer school portal

application.

● Finalize the ansible package.

● Write a Blog
14 August - 21 August ● Try to find and fix bugs

● Thoroughly test the application for unexpected

behaviour and make necessary changes.

● Write a Blog

Sugarizer School Portal - GSOC 2020

21 August - 24 August ● Prepare Documentation

● Prepare for final evaluation

● Write a Blog
24 August - 31 August Final Evaluation

● A complete end to end application developed

● Ansible package developed for automating setup

process which could create the required kubernetes

infrastructure.

● All features of the super admin console and school

console functional.

