
Sugarizer Knowledge Activity Pack (GSoC
2020 Proposal)

Personal Details

Name: Utkarsh Raj Singh
E-Mail Id: ​u.rajsingh2503@gmail.com
GitHub Profile: ​https://www.github.com/utkarsh-raj
LinkedIn Profile: ​https://www.linkedin.com/in/utkarsh-raj25
First Language: English, Hindi (Native)
Location: India
Timezone: GMT +5:30

Open Source Contributions

Contributions to Sugarlabs
I have been an active member of the Sugarlabs community for more than a year.
Started engaging and contributing in February 2019, and since then it has been a
learning enriched journey. ​Mentored for Google Code In with Sugarlabs for Sugarizer
Projects in December 2019​. I am comfortable with the Sugarizer architecture and have
built several patches:

➔ #706

◆ Built the Chess Activity as a part of the GSoC 2020 task
◆ A full activity integrated in Sugarizer with Sugar Web, Bootstrap 3 and

Presence
➔ #386

◆ Address the issue of non standard implementation of presencepalette.js in
Memorize Activity

➔ #283
◆ Fixed the issue of vanishing recent marks
◆ The issue occured in the Stopwatch Activity for the recorded times

vanished after a few recordings

mailto:u.rajsingh2503@gmail.com
https://www.github.com/utkarsh-raj
https://www.linkedin.com/in/utkarsh-raj25
https://github.com/llaske/sugarizer/pull/706
https://github.com/llaske/sugarizer/pull/386
https://github.com/llaske/sugarizer/pull/283

➔ #282
◆ Fixed the issue of responsiveness in the Memorize Activity
◆ Tested for all modern viewport dimensions

➔ #280
◆ Related to PR #283, discussed with the maintainers the justification of

the issue
➔ #279

◆ Fixed unexpected token in JSON Error and stopping the Activity from
hanging

◆ Applied data cleaning before parsing
➔ #278

◆ Identified the vulnerabilities of RegEx DoS due to deprecated
dependencies in the Developer Electron JS build for Sugarizer

➔ #277
◆ Added the Click and Drag Feature after discussion with the maintainers

➔ #276
◆ Discussed with the maintainers and safely closed the mild issue of extent

of zooming out in the Color My World Activity
➔ #304

◆ Proposed the Chopsticks Activity for Sugarizer
◆ Worked on the JS version of the proposed implementation and submitted

for review by the maintainers

Contributions to other Open Source Projects
I have been engaging with the Open Source community in general and contributing in
various forms. Some of them are:

● GirlScript Summer of Code​ (​My contributions​) - Currently serving as a mentor
for ​WebTech​ , we are guiding students to develop and maintain a Web
Application for Testing the Tech Stack of websites.

● freeCodeCamp​ (​#25829​ , ​#25978​) - Deliberated over the best programming
practices with the developers for the guides in FCC.

● Appwrite.io​ (​#107​ , ​#116​) - Fixed CSS bug in ​Hacktoberfest 2019​, member of
the organisation since then.

● Mozilla Developer Network​ (​#26​) - Fixed a bug in the tutorial code of the Web
Speech API.

Open Source/Personal Projects

https://github.com/llaske/sugarizer/pull/282
https://github.com/llaske/sugarizer/issues/280
https://github.com/llaske/sugarizer/pull/279
https://github.com/llaske/sugarizer/issues/278
https://github.com/llaske/sugarizer/pull/277
https://github.com/llaske/sugarizer/issues/276
https://github.com/llaske/sugarizer/issues/304
https://www.gssoc.tech/index.html
https://github.com/kaiiyer/webtech/issues?q=mentions%3A%40me+is%3Aclosed
https://github.com/kaiiyer/webtech
https://www.freecodecamp.org/
https://github.com/freeCodeCamp/freeCodeCamp/issues/25829
https://github.com/freeCodeCamp/freeCodeCamp/pull/25978
https://github.com/appwrite/appwrite
https://github.com/appwrite/appwrite/issues/107
https://github.com/appwrite/appwrite/pull/116
https://hacktoberfest.digitalocean.com/
https://github.com/mdn/web-speech-api
https://github.com/mdn/web-speech-api/pull/26

In the journey of learning, I also have developed several projects to implement the
theory in practice:

● Vue.js Activity Template for Sugarizer Activities​ - A template inspired by the
Ebook Reader Activity. Provides the basic functionality for the setting of
Sugarizer Application on the web.

● Vue.js practice​ - A collection of mini projects and exercises to learn Vue.js.
○ Monster Slayer​ - A simple player vs. monster game, practice the basics of

Vue.js
○ Wonderful Quotes​ - Components and slots practice
○ Components - 1​ - Practicing components fundamentals
○ Components - 2​ - Communication through components
○ Directives​ - Creating the directives to handle the click event
○ Dynamic Components​ - Switching between components with the

component tag
● Rich Text Editor​ - A RTEditor developed as a prototype for the previous GSoC

Application
○ Incorporates features like Font size, style, format, subscript, superscript.
○ Text align, copy paste and font color change and background color

change.
○ Supports image uploads in the document.

● Cook Book​ - Bootstrap 3, Node.js, Express.js, MongoDB Atlas based web
application with Multi-User Authentication, search and CRUD.

○ Cook Book - LIVE
● APIs and Microservices​ - Developed several services as APIs in JS and Python,

including ​File Metadata​, ​Header Parser​, ​Timestamp​ and ​URL Shortener
● Chat Mini​ - WebSocket based online real time Instant Messaging Service, built

with JS.
○ Chat Mini - LIVE

● Chop Game​ - The Japanese Chopsticks game written in Vanilla JS
○ Chop Game - LIVE

● RESTful Blogging​ - A Full Stack Web application developed in NodeJS
○ Utilizes MongoDB and has Express Framework and Semantic UI in the

Frontend

Project Details

What am I making?

https://github.com/utkarsh-raj/VueJS-Activity-Template
https://github.com/utkarsh-raj/vuejs-practice
https://github.com/utkarsh-raj/vuejs-practice/tree/master/Monster%20Slayer
https://github.com/utkarsh-raj/vuejs-practice/tree/master/Wonderful%20Quotes
https://github.com/utkarsh-raj/vuejs-practice/tree/master/Components%20-%201
https://github.com/utkarsh-raj/vuejs-practice/tree/master/Components%20-%202
https://github.com/utkarsh-raj/vuejs-practice/tree/master/Directives
https://github.com/utkarsh-raj/vuejs-practice/tree/master/Dynamic%20Components
http://utkarsh-raj.000webhostapp.com/RTEditor/RTEditor.html
https://github.com/utkarsh-raj/cook-book
https://afternoon-eyrie-98835.herokuapp.com/
https://github.com/utkarsh-raj/apis-and-microservices
https://github.com/utkarsh-raj/apis-and-microservices/tree/master/File%20Metadata
https://github.com/utkarsh-raj/apis-and-microservices/tree/master/Header%20Parser
https://github.com/utkarsh-raj/apis-and-microservices/tree/master/Timestamp
https://github.com/utkarsh-raj/apis-and-microservices/tree/master/URL%20Shortener
https://github.com/utkarsh-raj/chat-mini
https://intense-thicket-96260.herokuapp.com/
https://github.com/utkarsh-raj/chopGame
http://utkarsh-raj.000webhostapp.com/
https://github.com/utkarsh-raj/RESTful-blog-app

The Sugarizer Knowledge Activity Pack includes the following activities:

Curriculum Activity
The basic objective is to provide the students to self assess their skills and maintain
interactive records for the same. A developed prototype for an application with similar
use cases can be found ​here

For the development, the following features and use cases are proposed:

● Display a hierarchical set of skills, grouped by categories.
● Will have two main modes -

○ Display mode​ - will display the skills grouped by the categories, an option
to select different categories to view the skills associated with each of
them.

○ Settings mode​ - will give the user options to Create, Read, Update and
Delete (CRUD) skills, their associated multimedia and the categories.

● Each skill card will include -
○ Boolean checkmark for the skill is acquired or not
○ Name and description of the skill
○ Image to demonstrate the skill, default to a predefined stock image
○ Audio to demonstrate the skill, default to a predefined stock audio clip

● Each category will include -
○ A title for the category
○ A color of the category for visual feedback.

● Star rating to every user - will provide the ratio of skills acquired to the total
number of skills

● The user can click on the skill card, which will display the name and image
initially, to get a popup and get all the data about the skill (READ operation on
skills card).

● A ​Progress Card​ feature will help the user ​export​ his data, like the skills
acquired, the multimedia saved, with the dates, his buddy icon and his star rating
to ​DOC/ODT/PDF/RTF​ format and download in his computer.

● The user will be able to add more skills to a category in the ​Settings​ mode.
● A side panel shows the user his summary - his buddy icon, the skills acquired

across all the categories, the multimedia saved (images and audio), and his star
rating

● The skills can be shared in a read only mode on the network so that other users
can see the progress.

● Fullscreen Button.
● Local Database Storage (Journal Integration).

https://github.com/utkarsh-raj/simplified-todo

● Interactive tutorial and documentation.
● Sugar Web UI, Buddy Colors when possible.
● Multi device support and responsiveness on all screen sizes.
● Localisation with the webL10n library.

Vote Activity
The basic objective is to allow the user to easily build a poll system from pre-defined
templates and share in the network. The developed prototype of for an application with
similar use cases is given ​here​ (​GitHub​)

For the development, the following features and use cases are proposed:

● The user can easily build a poll of the following three templates:
○ Yes/No Voting (Binary Voting)
○ Multiple Choice Questions (4 Options for the current prototype)
○ Free text answers

● The user can create a new poll and share it with the network to allow the other
users to join and vote.

● The users will be able to see the results and the statistics of the vote:
○ In real time, with the host
○ After the poll ends
○ As set in the template configurations by the host

● The home screen will allow the user to quickly start a poll from the set templates
present in the Journal, or from previous templates designed by the user.

● The settings screen will give the user options to create a new poll, or customise
an existing poll template.

● The Poll results can be exported in the PDF/CSV formats.
● Search feature for existing polls, in Home Page and Settings Page.
● Timer Integration
● Local Database Storage (Journal Integration).
● Interactive tutorial and documentation.
● Sugar Web UI, Buddy Colors when possible.
● Multi device support and responsiveness on all screen sizes.
● Localisation with the webL10n library.
● Fullscreen Button.

Implementation Details

https://rocky-basin-25590.herokuapp.com/
https://github.com/utkarsh-raj/polls

Curriculum Activity
The features proposed are discussed in the implementation level:

● Play Mode
○ UI and flows

■ The proposed UI for the Play Mode will be

■ The categories will be in the left, stacked top to bottom. Each
category tile will have a ​custom background color selected by the
user​, and the name of the category. Upon clicking, the category will
be selected and the associated skills will be displayed on the right
hand side.

■ The skills will be in the right, in the form of tiles. Each skill tile will
have the name of the skill, the image and a checkbox if it is
acquired by the user.

■ Upon clicking on the skill, a popup will open which will give the
name, description, multimedia (audio, image), a checkbox to tick if
the skill is acquired by the user.

■ The user can ​Update​ the multimedia and the checkbox (skill
acquisition status) from the popup. An option to upload the
multimedia from the journal will be given in the popup.

■ The sample of the popup is shown

■ The bottom of the page will show the user details and the ​date on
which the skill was acquired​. We can also play the audio from the
bottom panel. The user rating will also be visible in the right.

■ There will be a button on the right side of the screen, which ​when
clicked will open the Side Panel​. This can also be done by
removing the button and opening ​as soon as the user takes his
mouse pointer to the rightmost part of the screen​. Another

approach will be ​to make the side panel visible only in the
settings modes​. The detailed implementation of how to activate
the side panel will have to be discussed with the mentor.

■ The UI will have Buddy colors, and the selected category and the
skill will be highlighted.

● Side Panel and Bottom Panel
○ UI and flows

■ The Side Panel will have the buddy icon and all the statistics

related to the user.
■ The ​number of skills acquired​ and the ​total number of skills
■ Multimedia related to the selected skills
■ Total multimedia instances uploaded
■ The categories in which the user has acquired the most number of

skills, that is, ​the strongest category​. Similarly, we can show the
category which requires the most improvement by the user.

● Settings Mode
○ CRUD skills

■ Create, Update Skills

● The add skill will be the last tile in the skills area in the
settings mode.

● Upon clicking, the user will get a popup, similar in UI to the
one in the play mode, where he will be able to add the title,
description, image, audio.

● When save changes is clicked, the ​skillAdded​ action is

emitted right up to the ​App Component​, where the data
manipulation is carried. Here the following actions take
place -

○ A new skill object is created with the stringified
multimedia

○ The associated category-id id added to the object
○ The object is added to the skills array
○ The student acquired-skills object is updated with the

addition of the {skill-id: false} and since Vue
components are reactive, the change is transmitted to
all the DOM elements.

■ Delete Skills

● The deleteSkill is emitted to the App Component and the
data manipulation is process

● The skills array and the student object are updated
● The reactive nature of Vue reflects the updates in all parts of

the DOM elements.
○ CRUD categories

■ Create/Update Categories
● The user will be able to click in the plus icon in the bottom of

the left side of the screen.
● The categories add will set a popup much similar to the one

in the skills area.
● When save changes will be clicked -

○ A new category object is created with the stringified
multimedia

○ The object is added to the categories array
○ The Vue components are reactive, the change is

transmitted to all the DOM elements.
■ Delete Categories

● The object is deleted from the categories array.
● The skills array is traversed and all the skills with the

category-id equal to the category deleted are also deleted (If
category is deleted, then all the skills under that category are
also deleted.)

● The Student object is updated with the skills.
○ CRUD multimedia

■ The skills and the categories will be able to get user uploaded
multimedia from the Journal.

■ The user will also update the audio and the image from the settings
mode.

■ A ​computed​ property can be added in the SidePanel which will
reflect all the multimedia changes in the data as soon as they are
updated.

■ The uploaded multimedia will be converted to base64 strings and
saved in the Journal with the time of upload.

■ The history of updates in the media is maintained with the
timestamp and displayed with image and audio tags in the DOM.

■ The set of ​v-if​ and ​v-else​ statements is used to display the
multimedia elements and ​v-on:click​ to each of the elements to call
a method to navigate to the skill associated.

● Search feature
○ A search area will be present in the toolbar, which will ​allow the user to

search for skills and categories by their name.
○ All the matching skills and categories will be displayed which are

associated with the search query.
○ For implementing this feature, we will ​maintain a dictionary of all the

skill and category names​, with their object Id as the value. An almost
O(1) lookup can be designed and we can get very fast search results.

○ The results can be rendered with the ​v-for​ directive and ​v-else​ and ​v-if
directives in Vue.js in the DOM

● Progress Report (export)

○ The Report Component will be responsible for the User Data to be made
into the PDF/DOC/RTF/ODF files. The Export button in the toolbar will
expose to the user a palette which will have 4 buttons for the four
possible export options mentioned earlier.

○ The entire document will be ​rendered with CSS and data will be
provided by the props in Vue.js​. This will create a DOM element which
will be given the ​#expor​t id.

○ This DOM element will be used to provide content in the various
approaches discussed to export the document.

○ The approaches in most instances require the DOM element to be actually
present in the viewport. In other words, it must be visible to the libraries
to be able to take snapshots of the content.
This can be tackled in two ways. They are discussed as -

■ We need to have custom CSS styled DOM content to export to
PDF, which can be done just as soon as the user clicks the export
to PDF button. In other words, ​we will make the DOM element
come into existence and the viewport for as long as the PDF
library runs​, and then we can delete the element from the page.

■ Another approach will be to always let the custom CSS style DOM
element exist in the page, but ​wrap it in a container and set its
height property to 0​. This will make the Progress Report visible to
the APIs, but not to the user.

○ Export to PDF

■ html2canvas​ - ​The script allows us to take "screenshots" of
webpages, directly on the user’s browser. The screenshot is based
on the DOM and will be used to generate the PDF.

■ jsPDF​ - Utilised with html2canvas to generate PDF documents.
○ Export to ODT

■ We can use ​the approach in the Write Activity​ for the generation
of ODT Document. We convert all the data to XML and append to a
string with the requisite headers.

■ Odt.js​ - A JavaScript Library to convert from HTML to ODT and
reverse.

○ Export to DOC
■ We can add the requisite header and footer to the html to export to

the DOC Format, as described in the following process

https://html2canvas.hertzen.com/
https://parall.ax/products/jspdf
https://github.com/llaske/sugarizer/blob/dev/activities/Write.activity/js/odt.js
https://github.com/codexa/odt.js

■ jQuery Word Export Plugin - The following approach can be used
to export the file to DOC Format utilising the ​wordExport()
function

○ Export to RTF

■ FileSaver.js​ - Implements the FileSaver API for all major Web
Browsers

■ The following approach also demonstrates a technique to format
the source in the RTF Format. The approach is based on Regex

https://github.com/eligrey/FileSaver.js

● Journal Data Object
○ We will make associations among the database tables to -

■ Make the storage more efficient
■ Lessen the lookup times

○ We will have to make sure that all the Ids of the objects created are
unique. For the same motive we will utilise the approach to make the
strings into a Hash Value.

■ The hash value of any length string will be a fixed length string
■ The hash value of two different strings will never be equal

○ This will ensure that we have unique IDs for all the objects.

○ Categories [] - An array of Category objects. This will be stored in the
journal and retrieved at runtime.

■ The category object will have id, title, background-color and the
image.

○ Skills [] - An array of Skill objects. This will be stored in the journal and

retrieved at runtime.
■ The Skill object will have id, title, background-color, image,audio,

and the ​category-id​.

■ The ​category-id​ will set up the many to one relationship between

the Skills table and the categories table, as depicted.

○ Student {} - An object which will store the information about the student.
Will be stored in the journal and retrieved at runtime.

■ Will store the ​id, name, roll-no, age, buddy-colors, rating​ (the
exact properties will best be discussed), and ​the acquired-skills
object​.

■ The acquired-skills object is essentially a dictionary, which will help
us provide an efficient O(1) lookup.

■ This technique is efficient as -

● Only the associated Ids are stored and redundancy is
minimised.

● If we want to get the status(acquired or not) of a skill of a
user, we just need to have the skill-id

Student.acquired-skills[skill-id]​ // returns true if the skill is completed
● Vue.js Components

○ Design of the components
■ The Activity can easily be fragmented into reusable Vue

components
■ The state variables will be -

● Categories [] - Will store all the category objects
● Skills [] - Will store all the skill objects
● Student {} - Will store the information about the student

○ Hierarchy of the components - props and emit
■ The diagram will give a general idea about the hierarchy in the

components

○ Description of the components

■ App - Contains all the data structures, and the Sugar components
like the toolbar, search input

■ Progress Report - Contains the logic and the templates to generate
the PDF/ODT/DOC/RTF files

■ Student - Manages the Settings, the skills panel, the skill tile and
the side and bottom panel. This will also be the handler for all the
Updation emits from the child components

■ Settings - Facilitates the Create, Read, Update and Delete
functions on the categories and skills

■ Skills - Shows the tiles with the skills
■ Skill Tile - Shows the data associated with the skill and the option

to add and update the multimedia
■ Bottom Panel - Shows the statistics about the user and the skill

selected
■ Side Panel - Shows the data and statistics about the user, the

categories, the multimedia and the user ratings, with an option to

Update them. Will be visible only when clicked or in the settings
mode.

● Image
○ Approach 1 - Images can be converted to base64 data URL using the

readDataAsURL()​ method of ​FileReader​, and could then be stored as
strings.

○ Approach 2 -Loading the image into and Image-Object and painting to a

non tainted canvas and the converting the canvas to the dataURL

● Audio

○ Approach 1 - Audio can be converted into ObjectURL strings using the
URL.createObjectURL()​ method, and then be stored as strings.

○ Approach 2 - We can get the base64 strings by the FileReader methods
as depicted.

The data structures will be present in the root component and can be passed to

the children in the form of props. The children component can communicate with the
updates in the form of emit statements.

● User ratings
○ The user will have a rating, which will depend on

■ The ratio of the skills acquired to the total number of skills
■ The time taken to acquire the skills (additional)

○ A star system will be implemented to give the user an overall sense of
accomplishment when using the activity.

● Network Sharing
○ UI and flows -

■ The user will be able to share his skills with the network. Once he
shares the instance, he can see all the users who have joined the
activity.

■ Two options will be visible with the buddy icon of each user -
● Send profile - The user will send his profile and the receiver

computer will open a popup to show the basic details of the
user and an option to download in PDF/ODT/DOC/RTF
Format the progress report.

● Request profile - The user can also request users on the
network to send their profile. The buddy icon will show a
help text to let the user know which user has requested for
his profile. He can send the profile if he wants to them with
the send function.

○ Presence actions definition
■ The following Presence actions can be defined -

● Init - Connect the user to the network as the host to be able
to view the others in the lobby

● sendReport - Send the data in JSON stringified form to the
user.

● requestReport - Request the report from a user present in
the network. (Note: The user can send his report without
waiting for the request also.)

■ The Progress Report component will handle the export if the user
wants to generate the file.

● The flow diagram can be -

● Journal Integration

○ We can use the ​LZ based compression algorithm for JavaScript​ to
compress the string before storing them in the Journal, taking inspiration
from the Exerciser Activity.

○ The current game variables of game state will be taken as the data.
○ The state variables will be converted to a JSON object.
○ The JSON object will be stringified and stored in the Journal in the

standard manner
○ According to the features, we can discuss and decide as to exactly which

variables and data structures should be stored in the object.

https://github.com/pieroxy/lz-string

● Localisation

○ Localisation will be done with the webL10n Library.
● Tutorial

○ We will use Bootstrap 3 Tutorial, as in the majority of Sugarizer activities
to make the tutorial interactive

● Responsiveness
○ We will use the Bootstrap 3 Library and the Sugar Web Library for

building the UI and taking care of responsiveness on all the screens.
○ The application will be tested to function on all the major Web Browsers

(Google Chrome, Mozilla Firefox, Safari, Microsoft Edge) and Electron.
● User Interface

○ This will be the basic layout of the UI. I propose to discuss with the
mentors on where will be the best to remove text and use figures and
geometrical shapes. The UI will be Sugar Friendly and will use Buddy
Colors for the Background and for the User Icons. I emphasize on using
less text and more figures, in respect of the Sugar Standards.

○ If we use Vue.js as an inline framework:
■ mounted() lifecycle hook can be accessed so that we can access

the reactive components after the DOM loads.
■ created() lifecycle hook can be accessed in multiplayer mode to do

the initial synchronisation of data before loading the DOM, like an
API fetch

■ v-for directive can be used to render the arrays in the DOM
■ v-else and v-if statements can be used for conditional render in the

DOM

■ watch() property can be used to update the DOM one the data in
the game changes in the Logic

● Time to acquire (additional)
○ The time a skill is added can be taken into account when the user checks

that the skill is acquired. The ​difference can be taken as the time to
acquire the skill​. Can be used to calculate the user rating and add a
statistic to the side Panel.

● Import categories and skills from other users (additional)
○ We can add a feature to explore the categories and skills created by the

other user to take inspiration and create our own set. The ​Student Object
{}​ and ​Skills [] Array​ can be shared with the users over the network and
the user can see the skill set in read only.

Vote Activity
The features proposed are discussed in the implementation level:

● Home Page
○ The home page will be similar to the ​Exerciser Activity​ - the user will be

able to ​start the poll from previously designed templates​.
○ There will be poll tiles for each of the designed polls.
○ The poll tiles will have -

■ The question
■ Type of the poll
■ Image
■ Play and Statistics Button

○ The poll can be started and stopped from the ​play icon​ in the poll tile.
○ The play button will start and open a ​statistics page​ for the host to see

the live results of the poll in real time.
○ He can see ​who first voted​, ​who voted for what​, and other data. We will

maintain the ​timestamp​ in the user response objects to implement this.
○ The stats button has two features -

■ Poll not started - The number of times this poll was taken, what
were the results, will be visible.

■ Poll started - The live data related to the poll, the results and the
users who have participated, will be shown.

○ For example - The poll with the question ‘Did you do your work’ is already
designed by the user as a Yes/No type poll.

■ The multimedia (image, audio etc.) are already uploaded, and
retrieved from the journal.

■ The title, description, options are also already defined.

● Settings Page

○ The settings page will give three tiles in the top:
■ Yes/No poll template - To create a new Yes/No type vote
■ Free Input Text poll template
■ Multiple Choice Question poll template

○ The user can choose any one of the three and start building the poll. A
screen will popup and will allow the user to fill in the requisite details and
start the poll.

○ In the bottom, there will be an option to edit the existing polls.
■ We can change the question, type, time allocated, description,

multimedia of the polls.
■ We can see the poll history and stats as discussed earlier

● Statistics Page

○ The statistics page will be shown to the host (and the users if the host
allows) ​when the poll is running​ (or at the end, as the host decides). It
will have charts and graphs and all the data required to analyse the
results.

○ We will use ​Chart.js​ for the data analysis. It is a very versatile JavaScript
library for HTML5 charts. It also redraws the charts on window resize for
maintaining the response and scale.

○ There will be an element which will show the host the buddy icons, the
option they voted for(in Yes/No, and MCQ) or the text they input(in Free
Text) of the users as they vote.

○ It will take into account the timestamp of the user vote and show a
scrollable list of users sorted according to earliest first.

○ The ​first user to vote will be highlighted​.
○ The ​current time of the system and the time the poll was started will be

compared​, and the time left for the vote to finish will be displayed.
○ The type of graphs will change as the type of poll changes.

https://www.chartjs.org/

○ More visual charts (pie charts, histogram) can be incorporated and more
analysis metrics like most chosen responses can be displayed.

○ The exact graphs and statistics to be displayed will be best discussed
with the mentor.

● Timer Integration

○ A countdown timer will be integrated to tell the time left for the poll.
○ From the start time of the poll and the user’s current time, we will

calculate the time left to finish the poll, in seconds.
○ We can make a variable called ​sec​ and set it to the number of seconds

left. We can then count in the logic and update the DOM with the values.
The DOM can be updated either by:

■ The ​watch​ property in Vue.js can listen to the updates in the value
of the time count variable and update the DOM.

■ Updating the ​​ with JS, we can use the ​setInterval()​ function
and configure it to listen to the ​window.onload​ event and start
counting

● Create New Poll/Customise Existing Poll
○ The create and customise poll will have a similar UI and will give the user

options to update the existing polls, or create a new poll out of the three
types.

● The Journal Object

○ The data structures are:
■ Polls [] - The array of polls objects
■ Answers [] - The array of response objects obtained during a poll
■ currentlyRunning - Stores the information about the currently

running poll in the runtime
■ voted - Maintains whether the user has voted for the

currentlyRunning poll
■ isHost - Tells if the user is host or not and is utilised in checking

privilege of the user.

○ The ​Polls []​ and the ​Answers []​ tables will be associated with the ​poll-id
as the primary key. The tables association will be efficient because:

■ Data storage redundancy will be minimise
■ The ​update when live voting will only have to be reflected in the

Answers [] table​ which contains the ​user-response​ objects.
■ A user answering multiple polls of the same or different users only

needs to make an Answer object with the associated poll-id.

○ The sample polls object will be -

○ The sample response object will be -

The benefit of having such structure is ​we only have to send the poll object
once to all the connected users​, and it will not be disturbed. The ​response
objects coming to any user will be stored in the Answers [] array​ and saved in
the local database, so that we can use them for showing the results, and
statistical purposes later. Only the answer object, which contains minimal
information and is very lightweight, needs to be sent to other users.
Also, since people have different speeds on the internet, we can expect that
there could be an anomaly in the order of response objects received by two
users. For example, User 1 might get the response of User 3 before User 2, and
User 4 might get the response of User 2 before User 3.
But, this will not have any adverse effects in this approach. ​Since all the
response objects are accumulated locally by each user, the results will be
consistent across all users.​ The only thing could be that the final updates might
be slower in low network areas, but they will be correct nonetheless.

This method will ensure that even if the host leaves the network (due to
probably a network error), the Answers [] array is distributed so the poll results
can be retrieved upon connecting once again from the other users. This is a
direct benefit of distributed data systems.

○ The nature of the activity allows for us to have fragmentation into several

Vue.js Components -
■ App - The root Component which handles the application and has

all the data structures and other system components (toolbar,
palette)

■ Statistics - The Component handles the data visualization methods
and the Chart.js elements. This will be available to the Host all time
but will be available to the user only if the host allows it.

■ PollUpdate - Handle the CRUD operation of the polls. Is visible
from the settings mode.

■ PollOngoing - Handle the presence methods when the poll is
started. Handles the DOM updates and the response objects from
the users. Shows only the poll question and the option to users
other than the Host.

■ Poll - Handle the Home screen. Has the poll templates both
pre-defined and the user created ones. Can be used again in the
settings page with addition to the edit mode.

○ Hierarchy among the Components can be shown -

The communication among the Components take place through ​Props​ and ​Emit
Statements.

○ We will have to make sure that all the Ids of the objects created are
unique. For the same motive we will utilise the approach to make the

strings into a Hash Value.

■ The hash value of any length string will be a fixed length string
■ The hash value of two different strings will never be equal

○ This will ensure that we have unique IDs for all the objects.

● Results Export to Files
○ PDF - We will export ​the statistics page in external file format​. This

option will be accessible to all who can see the result.
 We will follow the approach stated in the export file discussion of

the previous activity and utilise the following libraries for the export -
■ html2canvas​ - ​The script allows us to take "screenshots" of

webpages, directly on the user’s browser. The screenshot is based
on the DOM and will be used to generate the PDF.

■ jsPDF​ - Utilised with html2canvas to generate PDF documents.

○ CSV - We have the ​Polls []​ array and the ​Answers []​ array which have
the data in JSON form, we can develop a method to take the data and
make an array. We can dynamically make the array with the required data
and call the given method to get the CSV.

● Multimedia CRUD

○ We can utilise the ​FileReader​ class like discussed in the previous activity
and shown here:

● Search feature

○ A search area will be present in the toolbar, which will allow the user to
search for polls and poll templates.

○ All the matching poll templates will be displayed which are associated
with the search query.

○ For implementing this feature, we will ​maintain a dictionary of all the poll
template names, with their object Id as the value​. An almost O(1) lookup
can be designed

○ The results can be rendered with the ​v-for​ directive and ​v-else​ and ​v-if
directives in Vue.js in the DOM

● Presence Integration
○ The following presence actions can be defined -

■ init - Connect the user and send any currentlyRunning polls, if
possible.

■ startVote - The selected poll is shared to all the users by the host
and the poll is started.

■ sendResponseObject - Send the response object to the presence
server, which will send to all the users.

■ showResults - Always enabled for the host and if decided by him,
also enabled for the users. Displays the results of the poll from the
locally accumulated Answers [] array formed from all the response
objects.

○ The activity is network intensive, so we define the workflow for the
activity sharing:

■ The host shares the activity and sends the Poll object to the
presence server.

■ The presence server sends the poll object to all the connected

users. They will be able to get all the data to ​form the Poll in their
local system​.

■ Now, suppose User 1 wants to Answer, ​he will make the Answer

Object with all the necessary information, which includes his​, and
only his, response to the poll.

■ The presence server now sends the ​response object to all the

other users​, including host. A listener will listen to the response
object and do two things:

● Update the local Answers [] array, which accumulates all
the response objects from all the users​. Note that there will
be no race condition as the array will only increase in size
and is cumulative. ​It does not depend on the order in which
the response objects arrive​ to any user’s computer.

● Update the DOM with the new response object. According
to the configuration settings, the host can decide if he wants
all the users to see the changes live or only he can do.

● Common use cases -

○ Add a poll​ - Go to settings and click on the template out of the three
given. The ​PollUpdate Component is displayed​. A form will be popped
up. Fill with the details and upload the multimedia files from the Journal.
The ​data is emitted from the PollUpdate Component and sent to the
App Component​, where the database manipulation happens, and will be
pushed to the Polls [] array​.

○ Edit a poll​ - Similar to adding a poll, go to settings and click on one of the
existing polls in the bottom panel of the screen. A form will popup with
the previously filled data. The user can update as desired and the​ data
will be sent to the App component from where the Polls [] array will be
updated​ (as we have the poll-id). However, ​the older instance will be
kept​ in the ​history​ array with poll-id to show the statistical history.

○ Delete a poll​ - The ​poll object is removed from the Polls [] array​, and
since Vue components are reactive the change is reflected simultaneously.

○ Start a poll​ - ​currentlyRunning will point to the selected poll object and
pollOngoing Component is displayed and starts handling​. The activity
will be shared with the network as soon as the play button is pressed.
isHost is set to true​. The ​startVote presence action​ is utilised to send the
poll object to the connected users.

○ Vote casting​ - When a new user joins, ​the pollOngoing Component
shows him the question and the input fields. Once the vote is casted, a
thank you message is shown, along with a timer and an option to see the
live results, if the Host has allowed this. ​The sendResponseObject

presence action is used to send the vote to the server​. Each user
maintains an Answers [] array and increments it with the response
objects coming in by the network from the other users.

○ Displaying history​ - ​If a poll is not running, clicking on the statistics
button will show the history of the poll​, exactly how many times the poll
was run, with the dates and what were the exact results. The journal will
store the old instances of the poll objects. ​All the poll objects having the
same poll-id are the time varied instances of the same poll​.
ShowResults presence action is utilised to send the notification to all the
users.

○ Results​ - When the poll ends, by the host or by the timeout, the statistics
are displayed. ​The Statistics Component starts handling and the
templates are displayed​. The ​results are saved in the poll object​ with the
host. They are saved for future purposes.

● The flow diagram can be -

● Journal Integration

○ We can use the ​LZ based compression algorithm for JavaScript​ to
compress the string before storing them in the Journal, taking inspiration
from the Exerciser Activity.

○ The current game variables of game state will be taken as the data.
○ The state variables will be converted to a JSON object.
○ The JSON object will be stringified and stored in the Journal in the

standard manner
○ According to the features, we can discuss and decide as to exactly which

variables and data structures should be stored in the object.

● Localisation

○ Localisation will be done with the webL10n Library.
● Tutorial

○ We will use Bootstrap 3 Tutorial, as in the majority of Sugarizer activities
to make the tutorial interactive

● Responsiveness
○ We will use the Bootstrap 3 Library and the Sugar Web Library for

building the UI and taking care of responsiveness on all the screens.
○ The application will be tested to function on all the major Web Browsers

(Google Chrome, Mozilla Firefox, Safari, Microsoft Edge) and Electron.
● User Interface

○ This will be the basic layout of the UI. I propose to discuss with the
mentors on where will be the best to remove text and use figures and
geometrical shapes. The UI will be Sugar Friendly and will use Buddy
Colors for the Background and for the User Icons. I emphasize on using
less text and more figures, in respect of the Sugar Standards.

○ If we use Vue.js as an inline framework:

https://github.com/pieroxy/lz-string

■ mounted() lifecycle hook can be accessed so that we can access
the reactive components after the DOM loads.

■ created() lifecycle hook can be accessed in multiplayer mode to do
the initial synchronisation of data before loading the DOM, like an
API fetch

■ v-for directive can be used to render the arrays in the DOM
■ v-else and v-if statements can be used for conditional render in the

DOM
■ watch() property can be used to update the DOM one the data in

the game changes in the Logic

Project Timeline

The timeline incorporates all the considerations I can take into account at the time of
developing, including the COVID-19 pandemic. My semester examination will be
tentatively finished by the 10th of May, so I will put in extra hours to cover up for the
deviation. I have no other projects in the Summer and can devote ​40-50​ hours per
week (approximately 6-7 hours per day). The timeline is very flexible, and the exact
dates can be decided with discussion with the mentors.

Keeping in mind the nature of the activities, I would like to work in the ​Incremental
manner, developing the basic prototype first and then enhancing it with new features.

I have made the project into modules, and hereby explain what are the deliverables for
each week -

Community Bonding Period (4 May to 1 June) -

● Discuss with the mentor and the members of the community about the use
cases, technologies to be utilised and the best practices to incorporate.

● Discuss with the mentors about coding practices and how to exactly implement
the features. Try to decide upon the activity state variables and other aspects
according to the use cases and the requirements.

● Start Blogs about the project and update regularly.

Week 1 (June 1 - June 7) -

● Basic UI and Bootstrap 3 incorporation

● Skill tile Component and UI
● Categories Logic and UI
● Journal Integration

Week 2 (June 8 - June 14) -

● CRUD Skills
● CRUD Categories
● Bottom Panel Component and UI
● Side Panel Logic and UI
● Update the Blogs

Week 3 (June 15 - June 21) -
● Export files
● CRUD Multimedia
● Buffer time for errors and bugs

Week 4 (June 22 - June 28) -
● Localisation
● Hashing Function Integration
● Presence Integration
● Star rating system

Evaluation 1 (June 29 - July 3) -

● First prototype of the Curriculum Activity
● Everything except the tutorial and the documentation
● Update the Blogs

Week 5 (July 4 - July 10) -

● Testing on web browsers (Google Chrome, Mozilla Firefox, Safari, Microsoft
Edge) and Electron

● Documentation and tutorial (Curriculum Activity)
● Update the Blogs
● Basic UI and Bootstrap 3 integration (Vote Activity)
● Polls Homepage (Vote Activity)

Week 6 (July 11 - July 17) -
● MCQ template and database object creation
● Yes/No template and database object creation
● Free Text Input template and database object creation
● Journal Integration

Week 7 (July 18 - July 24) -
● CRUD Polls
● Polls Settings Page
● Statistics Page
● Update the Blogs

2 Days before Evaluation 2 (July 25 - July 26) -
● Discussion and deliberation over the best methods for the presence integration
● Buffer time for errors and bugs

Evaluation 2 (July 27 - July 31) -

● Fully completed Curriculum Activity
● Partially completed Vote Activity
● Incorporates all the basic CRUD functionalities and the journal integration

Week 8 (August 1 - August 7) -

● Presence Integration (all the module)
● Buffer time for error and bugs

Week 9 (August 8 - August 14) -
● Export feature
● Timer Integration
● Search feature

Week 10 (August 15 - August 21) -
● Localisation
● Tutorial and Documentation
● Buffer time for errors and bugs
● Update the Blogs

2 Days before the Final Evaluation (August 22 - August 23) -
● Testing on different Web Browsers and on the Electron
● Extra time for unforeseen work and errors.

Final Evaluation (August 24 - August 31) -

● Completed both the activities
● The documentation and tutorial is finished
● The blogs are updated.

How will it impact Sugarlabs?

The curriculum activity will provide a reliable channel for self assessment. The
importance of integrity and self discipline is known to us. I believe that the addition of
the Curriculum Activity will help the students imbibe a healthy competitive
temperament, which will help them keep a track of their skills in a plethora of curricular
and co-curricular areas, and also be able to learn from each other. It will also provide a
way for teachers to assess the students and see which kind of skills they want to learn.

The vote activity is very important, for it will provide a quick and trustworthy way of
organising quick polls and help everyone voice their ideas. It will also be interesting for
the students to make polls on new and trending problems and take the opinion of all
their friends. This will be a great addition to the classroom, where the teachers will be
easily able to see how the class is responding to the lessons, and whether they can
answer satisfactorily. The activities will be great additions to the already highly valuable
Sugarizer Activities.

My plans post GSoC 2020

I will be maintaining the activities and fixing the error and bugs regularly, and will keep
discussing to further improve the activities. Since the activities are practical use cases
based, we might require frequent feature changes and updates. I will be available all
round the year for the issues related to the activities and all the Sugarizer activities.

I have been contributing and engaging in conversations and discussion in Sugarlabs
and Sugarizer for more than a year. I will continue to do my best to be an active
member of the community. I will love to welcome new members to the community and
mentor when possible in the upcoming events. I would like to take this opportunity to
thank Sugarlabs for being such a supportive place for my Open Source Journey, and all
the admins, mentors and contributors, who have been wonderful in making the
organisation a constructive and beautiful place to work and keep learning and
developing for the students all over the world.

