

Music Blocks JavaScript Export
Sugar Labs

GSoC 2020 Project Proposal

INTRODUCTORY DETAILS

Full Name

Anindya Kundu

University

I am pursuing BTech in Information Technology from Indian Institute of Engineering

Science and Technology, Shibpur , in the academic term 2017-21.

Email

anindyaak007@gmail.com , anindya.k22@outlook.com

GitHub Username

meganindya

IRC nicknames

meganindya1, pluto

Languages

My first language is Bengali. However, I am proficient in English and comfortable to

communicate in the same.

Location

I am located in Kolkata, West Bengal, India. My timezone is Indian Standard Time or

UTC+5:30 .

Previous Open-source Experience

I have a brief exposure to open-source development through Hacktoberfest (2019), and

an educational open-source program called Kharagpur Winter of Code (2019) conducted

by Kharagpur Open Source Society: KOSS, the open-source club of Indian Institute of

Technology Kharagpur.

Through Hacktoberfest, I learnt the basics of Git and GitHub while contributing solutions

for a few competitive programming problems, in Java. During Kharagpur Winter of Code ,

I further improved upon my hold on version control and contributed to three repositories:

mailto:anindyaak007@gmail.com
mailto:anindya.k22@outlook.com
https://github.com/meganindya
https://kossiitkgp.org/public-files/KWoC/2019-Certificates/KWoC19-Anindya%20Kundu.pdf

1. Competitive Programming Data Structures and Algorithms

2. Moviepedia

3. Home's Magic

I contributed five programs to the Competitive Programming repository based on linked

lists, binary tree, mathematics, and dynamic programming, all in Java .

The second is a movie catalog website in development that uses themoviedb API, and is

developed in Angular CLI. I fixed a design issue, and restructured and restyled some

elements to improve the appearance. I contributed in HTML and CSS (plus Bootstrap).

The third is the one I’ve contributed most to. It is a home-cooked food delivery website in

development, written in HTML, CSS, PHP , MySQL. My work included restructuring the

HTML layout, restyling by improving the CSS and improving the design language,

updating the CDN versions, restructuring the PHP code and files, and refactoring existing

PHP and MySQL code.

Here is a link to my final project report: KWoC 2019 Project Report - Anindya Kundu .

Technical Knowledge, Interests, Previous Work

In terms of Programming Languages , I am introduced to Java, C , C++, JavaScript, PHP,

Python , SQL , Assembly, MATLAB , and C#, of which I am most comfortable in Java, C , and

JavaScript. I am also briefly introduced to JQuery , React, and Angular frameworks.

I am ambitious about creating/contributing to technologies that make the process of

education more efficient by doing away or cutting down tedious processes. As such, I am

quite interested in Web Development and have been briefly doing so since the last 4

years. Interestingly, my motivation is perfectly in line with this particular project in

particular, and Sugar Labs in general.

I have built quite a handful of simple projects, mostly based on Web Development . Very

recently, as part of my 5th semester Database Management project, I built a mock

College Database web application that interacts with a database of students, instructors,

courses, and departments. Features included personal information view/edit, and

recording attendance and marks per student per course. I used HTML, CSS, PHP, and

MySQL in the project.

https://github.com/rishabhgarg25699/Competitive-Programming
https://github.com/samagragupta/Moviepedia
https://github.com/yellowwoods12/Home-s-Magic
https://drive.google.com/file/d/1de3qR6KboJ6XoIfw5QQVxD735CTqWFzc/view?usp=sharing
https://github.com/meganindya/dbms-project

Also to showcase, I built a few front-end board games: Minesweeper, Snakes and

Ladders , and Sudoku. They are written in HTML , CSS , and vanilla JavaScript, and

correspond to Sugarizer activities to some extent.

Apart from these, I’ve built a few simple utility apps like Scientific Calculator, Expenditure

Notebook , Dice Game, etc. that aren’t listed on GitHub. My notable non-web works

include Radar Game written in Processing , Dinosaur Game written in C (OpenGL), an

image processing Route Plotter in Python, and a few Deep Learning projects in Python .

SUGAR LABS AND ME

I came across Sugar Labs from a batchmate of mine, who is a GSoC 2019 participant

(with mlpack). After Sugar Labs was announced as a participating organization in GSoC

2020, I started playing around Music Blocks and Sugarizer (desktop and web).

Unfortunately, I was a bit stuck with academic engagements. Around mid-March

onwards, I started reading the Music Blocks guide between the lines while trying them

out on the hosted web app, so that I could understand all functionalities of the

application. I have started contributing from around the last week of March.

Pull Requests

PR Name, ID Description Status

Improve appearance of

Wheel Menu (#2175)
General UI enhancement. Merged

Generate notes to

play/save on the fly (#2176)

Fixed issue #2165 (updated pitch

values not reflected in grid playback).

Created a function to generate the list

of notes to play, live, from the state of

the blocks (highlighted) in the Phrase

Maker.

Merged

Fixed issue of notes being

inside repeat block in

phrase maker (#2178)

Fixed issue #2051 (Repeats Skipped in

Phrase Maker). I figured out there was

an ID comparison mismatch; I fixed the

comparison. In addition, I fixed an

Merged

https://github.com/meganindya/front-end-web-apps
https://github.com/meganindya/radar-game
https://github.com/meganindya/dinosaur-game
https://github.com/meganindya/dinosaur-game
https://github.com/sugarlabs/musicblocks/pull/2175
https://github.com/sugarlabs/musicblocks/pull/2176
https://github.com/sugarlabs/musicblocks/issues/2165
https://github.com/sugarlabs/musicblocks/pull/2178
https://github.com/sugarlabs/musicblocks/issues/2051

invalid access condition, which was

throwing an exception.

Fix re-sorting issue (#2180)

Fixed issue #2179 (Sorting works only

once in Phrase Maker). There is a flag

variable whose value I reset on

encountering the problem condition.

Merged

Issues Raised

Issue Name, ID Description Status

Tour window imperfect

positioning (#2172)

The tour window appears at different

positions. The window position can be

made useful if it hovers around the

corresponding button it is describing.

Open

Tour window fullscreen

problems (#2173)
UI problems with the tour window in

fullscreen mode.
Open

Block Pie Menu position

doesn’t change with

scrolling (#2174)

If the pie (wheel) menu of a block is

opened and the canvas is scrolled, the

blocks scroll while the wheel doesn’t.

Open

Sorting works only once in

Phrase Maker (#2179)

In the Phrase Maker, if pitches are

modified after sorting such that the

sorting order is lost, re-sorting wasn’t

being allowed.

Closed (by

#2180)

Notes improperly restored

in Phrase Maker (#2185)

Pointed out by walterbender while

discussing PR #2178 . In the phrase

maker, if the matrix is generated from a

block stack containing note blocks or

repeat, if new notes are added they are

erroneously restored if reopened.

Open

https://github.com/sugarlabs/musicblocks/pull/2180
https://github.com/sugarlabs/musicblocks/issues/2179
https://github.com/sugarlabs/musicblocks/issues/2172
https://github.com/sugarlabs/musicblocks/issues/2173
https://github.com/sugarlabs/musicblocks/issues/2174
https://github.com/sugarlabs/musicblocks/issues/2179
https://github.com/sugarlabs/musicblocks/pull/2180
https://github.com/sugarlabs/musicblocks/issues/2185
https://github.com/walterbender
https://github.com/sugarlabs/musicblocks/pull/2178

Communication

Since I’ve been around for only a brief period so far, I don’t have extensive

communication experience with the community. However, in this shorter span, I’ve

reached out to the mailing list a few times: a couple times to clarify about the project and

received replies from James Cameron and Sumit Srivastava , and other times to clarify

doubts while trying to solve an issue and received replies from Walter Bender. On

GitHub I’ve mostly communicated with Walter Bender regarding issues and pull requests.

Experience so far

In this brief period, I’ve mostly been concerning myself with issues with the Phrase Maker

widget. I’ve fixed three issues related to it, and encountered one of them in between.

Also, on fixing one of them, another issue popped up, pointed out by Walter Bender. My

impression has been that an open-source job is tedious and involves much more reading

and debugging than writing new code. I’d been scrolling through thousands of lines of

one of the JavaScript files for hours at a stretch trying to identify the cause of the bugs.

However, after hours of effort, when I could resolve the issue, it was very rewarding. I did

realize the fact that communication is key. On two occasions I’d a doubt regarding

certain functions; after reaching out to the mailing list, I was able to find answers. Also,

regarding GSoC projects, I’ve found that the mailing lists in the community are quite free

and helpful. I myself benefitted from two such discussions.

I intend to continue contributing to this community actively, now onwards. In the next few

weeks I intend to tackle more bugs, specifically with blocks, after I’ve resolved a few

more visible issues with the phrase maker .

PROJECT DETAILS

Introduction
My idea is based on the description provided for “ Export Music Blocks code to

JavaScript ”. Since a similar project titled “Turtle Blocks Python Export” was done by

Marion Zepf in GSoC 2013 on Turtle Blocks (on which Music Blocks is based on), I’d like

to take some inspiration for it, while being careful not to loosely copy things. As I

understand, the goal of this project is to help users eventually graduate from blocks to a

text-based language. Hence, the project essentially requires generation of JavaScript

code which corresponds to the block stacks in the canvas, and possibly run the code too.

https://github.com/outofthecave

I’d break down my project idea to have three properties:

1. Generate an independent HTML file that displays the block stacks.

2. Generate an independent and valid JavaScript file whose tokens and structuring
correspond to the block stacks.

3. The possibility to run the JavaScript file that would have the same effect as
clicking the 'play' button on the HTML file.

In words, when a user exports a project, an HTML and a JavaScript file (and few other

dependent files) will be downloaded. The HTML file will display the canvas and the

blocks. Beside it, the generated JavaScript code will be shown. The canvas will have a

play button to play the start blocks, and another to run the JavaScript which should

produce the same effect (if the JavaScript code is unaltered).

Impact on the Sugar Labs community
The mission of Sugar Labs is to stimulate learning. Since Music Blocks is a tool to teach

the basic concepts of programming to beginners, this project would take the community

to a higher ground - beginners can go beyond getting introduced to programming, by

‘graduating’ to conventional and more expressive text-based languages (like JavaScript).

The project would give the users a template (with familiar behaviour) to experiment on;

users would be able to play around the JavaScript code and make valuable observations,

as opposed to having to learn the language by writing programs from scratch.

Primary Objectives
Preparation

● Strip down the existing code to the essential ones for rendering, playing blocks, etc.

● Figure out details about the stored parameters for different types of blocks.

● Implement a way to re-render and play the blocks outside of Music Blocks ,

independently.

● Devise an object-oriented structure to store information about blocks (e.g. behaviour,

output token type, possible identifier name, etc.).

● Study libraries that generate Abstract Syntax Tree (AST) from the JavaScript code (for

running the code).

Bringing things together

● Create a template HTML file and a script to augment additional (block stack)
information into the HTML file.

● Create scripts to implement the object-oriented structures for the blocks.

● Create a script to convert the Music Blocks (inner) block structure to an AST , and a

script to generate output code from it.

● Create a script to execute the above three and other behaviour like play/stop.

Finalizing

● Create a script to restructure the files for output.

● Garbage collection, if any.

Optional Features

● Display a guide about basics of programming (e.g. variables, functions, etc.).

Scope of the Project

I want to keep the scope of the project within limits so that I can successfully complete it

in time. Therefore, I want to limit my project only to the blocks in the beginner mode.

Also, I’d primarily work only on the non-widget blocks. On successful completion of them

will only I work on the widgets.

Tech Stack

● I intend to develop the project primarily with JavaScript (ES6 or ECMAScript 2015). In

addition, I’d require the use of HTML5 and CSS3 for the basic layout.

● As of now, I intend to use the Esprima library to generate Abstract Syntax Trees (AST)

following the ESTree ES2015 specification.

● To generate code from ASTs , I intend to use the Escodegen library.

I want to mention that my choice of libraries is not fixated. I’ve picked the two since they

can be run on the browser directly. However, I might look for other options like Meriyah

and Astring too. This shouldn’t be a big issue as they all essentially do the same thing.

Project Description and Mockup

User Interface

The basic interface this project would provide is a Music Blocks canvas, with only the

play button and no bar or palette. The canvas would display the block stacks as they

were while exporting. Users wouldn’t be able to make changes in the structure once

exported. This is so because that’d require much more dependencies and would partly

become Music Blocks itself on the desktop, which is beyond the scope of this project.

(mock layout)

The project’s interface would look somewhat similar to this; also the code for the above

representation of the block stack would look like the sample on the right (However I want

to safely mention that these are subject to changes during the course of development).

Block Structure
Inherently Music Blocks stores the block structures as multidimensional arrays. Each
block has an array with five arguments: ID, properties (array), X-coord, Y-coord , IDs of
linked blocks (array).

For example, for the block structure

the inner structure is

An Abstract Syntax Tree (AST) will be created from this representation in the ESTree

format specification which can then be converted to the output JavaScript (ES6), using

the serialization library Escodegen (or Astring, etc.).

Object Structure

All the blocks in Music Blocks can be represented in JavaScript by functions , variables,

constants, operators, if-else blocks, while loops, and inline statements. Hence, there is a

need to bother about only a small subset of ESTree specifications while creating the AST.

I intend to create an object-oriented representation of the blocks by designing a custom

class that will store all information about each block, and link implementation code

(rendering, behaviour, etc.) with output JavaScript code (token type, identifier name,

arguments, etc.). I’ll then parse the original block structure and convert the blocks into

objects of the said custom class . I’ll then create a custom AST using the objects only. I’ll

then parse this AST and convert it to the ESTree specified form.

Moving back to the blocks, they can have different behaviour. Some can be

parameterized functions, some can be functions just to call a list of other functions, while

others might be statements. For example, consider the block stack

Here, the start block can be represented by a function which calls other functions one by
one as in the block stack:

function start_1() {
----callee_1(...);
----callee_2(...);
}

The repeat block can be represented by a while loop which could output like:

var n = 4;
while ((n--) > 0) {
----....
}

The note block can be represented by a function that takes two arguments - a floating

point value, and a list of callback functions . The example above could look like:

function note(value, fns) {
----var freq = retrieve_pitch_sum_in_hertz(fns);
----play_pitch(freq, value);
}

The pitch block can be represented by a function with a return value, like:
function pitch(name, octave) {
----// calculate frequency value
----var freq = ...;
----return freq;
}

Overall, the block stack becomes:
// function declarations
function start_1() {
----var n = 4;

----while ((n--) > 0) {
--------note(
------------1 / 4,
------------[
----------------pitch(“sol”, 4);
------------]
--------);
----}
}

// for example only
function play(start) {
----start();
}

// call the function
play(start_1);

As evident, a good solution would be an object-oriented approach: each block would be

an object (or instance) of a class , say ‘Block’, with the instance variables to store

information about the respective block, and instance methods to define the behaviour

(e.g. the pitch function represented above). The class declaration could look like:

While parsing blocks, we can fetch all information about the blocks from inherent details

used to render, play , etc. to details about the output code to generate that will be used to

create the AST mentioned earlier. After the AST is created it can easily be converted to

the output code. It is important to note that some blocks (e.g. set master volume) will be

represented by inline statements, e.g. variable assignment. Hence, harmony should be

maintained between the code to keep it valid (e.g. assignment statements should work

on the variable in scope only).

Executing the Generated Code

There is the requirement of mapping the effect producing (e.g. sound playing) functions

in the output code to their respective behaviour in Music Blocks. To solve this a library of

functions would be created and their implementation will be hidden from the user in an

effort to preserve abstraction.

The AST libraries (Esprima, Meriyah) can take care of the Lexical, Syntax, and Semantic

Analysis . Thus, if the generated code is altered, users can know if errors have been

made. If clear, the code can be executed as is.

PLAN OF ACTION

I plan to actively work on this project four days a week from Thursday - Sunday between

IST 12:00 and IST 24:00. I don’t yet have a planned activity to do besides this, during the

span of the event. However, due to critical conditions arising throughout the globe due to

CoVID-19 this year, my schedule might need to move slightly back and forth a little bit.

Due to the said cause, my semester has been suspended for the time being, and I’m not

sure how things will go about after April 15th. So, considering the conditions, I intend to

do things ahead of time to make adjustments for academic engagements if they

coincide. I’ll regularly keep my mentors informed about such situations.

Preparation Phase

Due to the uncertainty of events this year, I’d start right off with the preparation right from

1st April. Initially I’ll start by exploring what the different 69 JavaScript files in the existing

codebase do, and which of them are relevant to my project. Since my project is centred

around block stacks and their behaviour, I’ll be continuing my contributions especially

around them by fixing bugs, in an effort to understand the code related to their

behaviour.

If I am selected, I’ll then start communicating with my mentors about how certain things

work and how they can be extracted to make them work independently outside Music

Blocks .

Timeline

As mentioned before, since a similar project has been successfully completed in GSoC

2013, I’d take inspiration from the said, and begin my timeline on the lines of it, while

deciding activities specific to my project.

June 1 - June 14

(2 weeks)

Figure out what code needs to be shared by Music Blocks and

the exported dependencies to locally achieve the required

behaviour, i.e. rendering and playing. Only cover the modules

required to run the blocks. Restructure the modules so as to

easily retrieve the required functions when having to execute a

block.

June 15 - June 21

(1 week)

Design the class definition for only the rhythm , pitch, and drum

blocks in the Music Palette, while documenting by hand the

properties each block needs to store (parameters) and what

code they’ll produce.

June 22 - June 28

(1 week)

Write scripts to parse the block stacks (mentioned earlier with

figure) and create an AST of block objects. Convert this AST to

ESTree specified format, for serialization libraries to work.

June 29 - July 3

(Phase Evaluation 1)

Some (rhythm, pitch , drum) block stacks can now be converted

to ASTs which can be serialized to get their output code. The

rest of the blocks can thereafter follow in a similar fashion.

July 4 - July 26

(3 weeks)
Hand document the properties and output code for the rest of

the blocks. Complete the class definition for all of them.

 Week 1
(Music Palette) meter, intervals, tone, ornament,

volume blocks to be dealt with.

 Week 2
(Programming Palette) flow, action, boxes,

number, boolean blocks to be dealt with.

 Week 3

(Graphics Palette) graphics, pen , media ,

sensors , ensemble blocks to be dealt with as

much as possible.

July 27 - July 31

(Phase Evaluation 2)
Most block stacks can now be exported to JavaScript code.

Aug 1 - Aug 9

(1 week + 2)

Strip down the HTML to render only the essential UI elements

(canvas, blocks). Implement the play feature to execute the

blocks on the canvas locally.

Aug 10 - Aug 16

(1 week)

Write scripts to analyze the (generated) JavaScript file (for user

made changes). Write the library for the implementation of

effect producing block functions (e.g. say playpitch(...) produces

sound of some frequency). Write the script to run the

(generated) JavaScript file.

Most essential objectives have been completed by now.

Aug 17 - Aug 23

(1 week)

Complete finalizing steps, e.g. writing scripts to restructure

output files, garbage collection. Test exporting multiple block

stacks; fix bugs (if any). Complete minor things (if left). Also, this

is a buffer period just in case things shift a little bit.

Progress Report

I plan to set up a blog to document the progress of my work. As in Marion Zepf ’s case,

she documented her progress through commit messages in an online repository; I plan

to follow her approach. If possible, I’ll set up a Wiki page too to keep track of my timeline.

Communication

I have already introduced myself to the mailing list, however I haven’t used the IRC yet. I

intend to more actively participate in these two. Again, it’s too early in the process to

foresee trouble, but there’s a high possibility that I might get stuck somewhere. In case, I

stumble around something and the mentors aren’t around, I’ll indeed rely on the two said

platforms first, but if there’s no fix, I’ll currently suspend the task that I have a doubt in,

and move to another task in the meanwhile, rather than wasting time. I’ll contact the

mentors once they’re back.

Post GSoC Plans

I’ve mentioned previously how the Sugar Labs community’s motivation and mine

coincide, and so I’d definitely keep hanging around and keep contributing even post

GSoC . As of now, I’ve done everything only around Music Blocks . Irrespective of whether

I get selected in GSoC this year, I plan to contribute to Sugar and Sugarizer too. In fact,

for starters, I already have a couple of Sugarizer activity ideas in mind. I’ve mentioned

earlier that I’ve built three board games: Minesweeper , Sudoku , and Snakes and

Ladders , as hobby projects using HTML , CSS , and vanilla JavaScript only. I’d probably

start by refactoring and porting these to Sugarizer .

CONCLUSION

Well, now that I’ve provided a somewhat detailed information about my project and how

I’m planning to do it, I want to end this with a little bit of arbitrary information regarding

myself. I am currently in my 6th Semester and I’m introduced to Formal Language and

Automata Theory (Theory of Computation) and Compiler Design . This project so much

seems like a hands-on job for the concepts I’ve learnt like Language, Grammar , Regular

Expression, Lexical Analysis , Parsing, Semantic Analysis, Intermediate Code Generation,

etc. I think I’ll really enjoy doing this project if given the chance to, since I’d get the

opportunity of actually using my classroom knowledge in a programming job.

In addition, I’m a tech enthusiast and I love designing 3D models of real-world objects

and buildings in my free time. I am somewhat obsessed with design perfection and so

you might sometimes find me pointing out too many design issues (kindly, bare with it ;p).

Thanks for reading. Have a great day!

