Music Blocks JavaScript Export

Sugar Labs
GSoC 2020 Project Proposal

INTRODUCTORY DETAILS

Full Name
Anindya Kundu

University
| am pursuing BTech in Information Technology from Indian Institute of Engineering
Science and Technology, Shibpur, in the academic term 2077-21.

Email
anindyaakOO7@gmail.com, anindya.k22@outlook.com

GitHub Username
meganindya

IRC nicknames
meganindyal, pluto

Languages
My first language is Bengali. However, | am proficient in English and comfortable to

communicate in the same.

Location
| am located in Kolkata, West Bengal, India. My timezone is Indian Standard Time or

UTC+5:30.

Previous Open-source Experience

| have a brief exposure to open-source development through Hacktoberfest (2019), and
an educational open-source program called Kharagpur Winter of Code (2019) conducted
by Kharagpur Open Source Society: KOSS, the open-source club of Indian Institute of
Technology Kharagpur.

Through Hacktoberfest, | learnt the basics of Git and GitHub while contributing solutions
for a few competitive programming problems, in Java. During Kharagpur Winter of Code,
| further improved upon my hold on version control and contributed to three repositories:

mailto:anindyaak007@gmail.com
mailto:anindya.k22@outlook.com
https://github.com/meganindya
https://kossiitkgp.org/public-files/KWoC/2019-Certificates/KWoC19-Anindya%20Kundu.pdf

1. Competitive Programming Data Structures and Algorithms
2. Moviepedia
3. Home's Magic

| contributed five programs to the Competitive Programming repository based on linked
lists, binary tree, mathematics, and dynamic programming, all in Java.

The second is a movie catalog website in development that uses themoviedb API, and is
developed in Angular CLI. | fixed a design issue, and restructured and restyled some
elements to improve the appearance. | contributed in HTML and CSS (plus Bootstrap).

The third is the one I've contributed most to. It is a home-cooked food delivery website in
development, written in HTML, CSS, PHP, MySQL. My work included restructuring the
HTML layout, restyling by improving the CSS and improving the design language,
updating the CDN versions, restructuring the PHP code and files, and refactoring existing
PHP and MySQL code.

Here is a link to my final project report: KWoC 2019 Project Report - Anindya Kundu.

Technical Knowledge, Interests, Previous Work

In terms of Programming Languages, | am introduced to Java, C, C++, JavaScript, PHP,
Python, SQL, Assembly, MATLAB, and C#, of which | am most comfortable in Java, C, and
JavaScript. | am also briefly introduced to JQuery, React, and Angular frameworks.

| am ambitious about creating/contributing to technologies that make the process of
education more efficient by doing away or cutting down tedious processes. As such, | am
quite interested in Web Development and have been briefly doing so since the last 4
years. Interestingly, my motivation is perfectly in line with this particular project in

particular, and Sugar Labs in general.

| have built quite a handful of simple projects, mostly based on Web Development. Very
recently, as part of my 5th semester Database Management project, | built a mock
College Database web application that interacts with a database of students, instructors,
courses, and departments. Features included personal information view/edit, and
recording attendance and marks per student per course. | used HTML, CSS, PHP, and
MySQL in the project.

https://github.com/rishabhgarg25699/Competitive-Programming
https://github.com/samagragupta/Moviepedia
https://github.com/yellowwoods12/Home-s-Magic
https://drive.google.com/file/d/1de3qR6KboJ6XoIfw5QQVxD735CTqWFzc/view?usp=sharing
https://github.com/meganindya/dbms-project

Also to showcase, | built a few front-end board games: Minesweeper, Snakes and
Ladders, and Sudoku. They are written in HTML, CSS, and vanilla JavaScript, and

correspond to Sugarizer activities to some extent.

Apart from these, I've built a few simple utility apps like Scientific Calculator, Expenditure
Notebook, Dice Game, etc. that aren’t listed on GitHub. My notable non-web works
include Radar Game written in Processing, Dinosaur Game written in C (OpenGL), an
image processing Route Plotter in Python, and a few Deep Learning projects in Python.

SUGAR LABS AND ME

| came across Sugar Labs from a batchmate of mine, who is a GSoC 2019 participant
(with mipack). After Sugar Labs was announced as a participating organization in GSoC
2020, | started playing around Music Blocks and Sugarizer (desktop and web).
Unfortunately, | was a bit stuck with academic engagements. Around mid-March
onwards, | started reading the Music Blocks guide between the lines while trying them
out on the hosted web app, so that | could understand all functionalities of the

application. | have started contributing from around the last week of March.

Pull Requests

PR Name, ID Description Status

Improve appearance of

General Ul enhancement. Merged
Wheel Menu (#2175)

Fixed issue #2165 (updated pitch
values not reflected in grid playback).
Generate notes to Created a function to generate the list Merged
play/save on the fly (#2176) | of notes to play, live, from the state of
the blocks (highlighted) in the Phrase

Maker.

))) Fixed issue #2051 (Repeats Skipped in
Fixed issue of notes being
o . Phrase Maker). | figured out there was
inside repeat block in Merged

an ID comparison mismatch; | fixed the
phrase maker (#2178)

comparison. In addition, | fixed an

https://github.com/meganindya/front-end-web-apps
https://github.com/meganindya/radar-game
https://github.com/meganindya/dinosaur-game
https://github.com/meganindya/dinosaur-game
https://github.com/sugarlabs/musicblocks/pull/2175
https://github.com/sugarlabs/musicblocks/pull/2176
https://github.com/sugarlabs/musicblocks/issues/2165
https://github.com/sugarlabs/musicblocks/pull/2178
https://github.com/sugarlabs/musicblocks/issues/2051

invalid access condition, which was

throwing an exception.

Fixed issue #2179 (Sorting works only
once in Phrase Maker). There is a flag

in Phrase Maker (#2185)

block stack containing note blocks or
repeat, if new notes are added they are

erroneously restored if reopened.

Fix re-sorting issue (#2180) Merged
variable whose value | reset on
encountering the problem condition.

Issues Raised
Issue Name, ID Description Status
The tour window appears at different
Tour window imperfect positions. The window position can be o
pen
positioning (#2172) made useful if it hovers around the
corresponding button it is describing.
Tour window fullscreen Ul problems with the tour window in o
pen
problems (#2173) fullscreen mode.
Block Pie Menu position If the pie (wheel) menu of a block is
doesn’t change with opened and the canvas is scrolled, the Open
scrolling (#2174) blocks scroll while the wheel doesn't.
In the Phrase Maker, if pitches are
Sorting works only once in | modified after sorting such that the Closed (by
Phrase Maker (#2179) sorting order is lost, re-sorting wasn’t #2180)
being allowed.
Pointed out by walterbender while
discussing PR #2178. In the phrase

Notes improperly restored | maker, if the matrix is generated from a o

pen

https://github.com/sugarlabs/musicblocks/pull/2180
https://github.com/sugarlabs/musicblocks/issues/2179
https://github.com/sugarlabs/musicblocks/issues/2172
https://github.com/sugarlabs/musicblocks/issues/2173
https://github.com/sugarlabs/musicblocks/issues/2174
https://github.com/sugarlabs/musicblocks/issues/2179
https://github.com/sugarlabs/musicblocks/pull/2180
https://github.com/sugarlabs/musicblocks/issues/2185
https://github.com/walterbender
https://github.com/sugarlabs/musicblocks/pull/2178

Communication

Since I've been around for only a brief period so far, | don’t have extensive
communication experience with the community. However, in this shorter span, I've
reached out to the mailing list a few times: a couple times to clarify about the project and
received replies from James Cameron and Sumit Srivastava, and other times to clarify
doubts while trying to solve an issue and received replies from Walter Bender. On
GitHub I've mostly communicated with Walter Bender regarding issues and pull requests.

Experience so far

In this brief period, I've mostly been concerning myself with issues with the Phrase Maker
widget. I've fixed three issues related to it, and encountered one of them in between.
Also, on fixing one of them, another issue popped up, pointed out by Walter Bender. My
impression has been that an open-source job is tedious and involves much more reading
and debugging than writing new code. I'd been scrolling through thousands of lines of
one of the JavaScript files for hours at a stretch trying to identify the cause of the bugs.
However, after hours of effort, when | could resolve the issue, it was very rewarding. | did
realize the fact that communication is key. On two occasions I'd a doubt regarding
certain functions; after reaching out to the mailing list, | was able to find answers. Also,
regarding GSoC projects, I've found that the mailing lists in the community are quite free

and helpful. | myself benefitted from two such discussions.

| intend to continue contributing to this community actively, now onwards. In the next few
weeks | intend to tackle more bugs, specifically with blocks, after I've resolved a few

more visible issues with the phrase maker.

PROJECT DETAILS

Introduction

My idea is based on the description provided for “Export Music Blocks code to
JavaScript’. Since a similar project titled “Turtle Blocks Python Export” was done by
Marion Zepfin GSoC 2013 on Turtle Blocks (on which Music Blocks is based on), I'd like
to take some inspiration for it, while being careful not to loosely copy things. As |
understand, the goal of this project is to help users eventually graduate from blocks to a
text-based language. Hence, the project essentially requires generation of JavaScript
code which corresponds to the block stacks in the canvas, and possibly run the code too.

https://github.com/outofthecave

I’'d break down my project idea to have three properties:
1. Generate an independent HTML file that displays the block stacks.

2. Generate an independent and valid JavaScript file whose tokens and structuring
correspond to the block stacks.

3. The possibility to run the JavaScript file that would have the same effect as
clicking the 'play' button on the HTML file.

In words, when a user exports a project, an HTML and a JavaScript file (and few other
dependent files) will be downloaded. The HTML file will display the canvas and the
blocks. Beside it, the generated JavaScript code will be shown. The canvas will have a
play button to play the start blocks, and another to run the JavaScript which should
produce the same effect (if the JavaScript code is unaltered).

Impact on the Sugar Labs community

The mission of Sugar Labs is to stimulate learning. Since Music Blocks is a tool to teach
the basic concepts of programming to beginners, this project would take the community
to a higher ground - beginners can go beyond getting introduced to programming, by
‘graduating’ to conventional and more expressive text-based languages (like JavaScript).
The project would give the users a template (with familiar behaviour) to experiment on;
users would be able to play around the JavaScript code and make valuable observations,
as opposed to having to learn the language by writing programs from scratch.

Primary Objectives
Preparation
e Strip down the existing code to the essential ones for rendering, playing blocks, etc.
e Figure out details about the stored parameters for different types of blocks.
e Implement a way to re-render and play the blocks outside of Music Blocks,

independently.

e Devise an object-oriented structure to store information about blocks (e.g. behaviour,
output token type, possible identifier name, etc.).

e Study libraries that generate Abstract Syntax Tree (AST) from the JavaScript code (for
running the code).
Bringing things together

e Create a template HTML file and a script to augment additional (block stack)
information into the HTML file.

e Create scripts to implement the object-oriented structures for the blocks.

e Create a script to convert the Music Blocks (inner) block structure to an AST, and a
script to generate output code from it.

e Create a script to execute the above three and other behaviour like play/stop.
Finalizing

e Create a script to restructure the files for output.

e Garbage collection, if any.

Optional Features

Display a guide about basics of programming (e.g. variables, functions, etc.).

Scope of the Project
| want to keep the scope of the project within limits so that | can successfully complete it
in time. Therefore, | want to limit my project only to the blocks in the beginner mode.
Also, I'd primarily work only on the non-widget blocks. On successful completion of them
will only I work on the widgets.

Tech Stack

e | intend to develop the project primarily with JavaScript (ES6 or ECMAScript 2015). In
addition, I'd require the use of HTML5 and CSS3 for the basic layout.

e As of now, | intend to use the Esprima library to generate Abstract Syntax Trees (AST)
following the ESTree ES2015 specification.

e To generate code from ASTs, | intend to use the Escodegen library.

| want to mention that my choice of libraries is not fixated. I've picked the two since they
can be run on the browser directly. However, | might look for other options like Meriyah
and Astring too. This shouldn’t be a big issue as they all essentially do the same thing.

Project Description and Mockup

User Interface

The basic interface this project would provide is a Music Blocks canvas, with only the
play button and no bar or palette. The canvas would display the block stacks as they
were while exporting. Users wouldn’t be able to make changes in the structure once
exported. This is so because that’d require much more dependencies and would partly

become Music Blocks itself on the desktop, which is beyond the scope of this project.

° JavaScript code

// start block 1

function start_1(0) {
newnote(l / 4, () = {

pitch(”sol”, 4);

pitch(”do”, 5);

3

newnote(l / 4, () = {
pitch(”fa”, 4);
1)

playdrum(”kick drum”);
}

// play button

function play() {
start_1();

}

(mock layout)

The project’s interface would look somewhat similar to this; also the code for the above
representation of the block stack would look like the sample on the right (However | want
to safely mention that these are subject to changes during the course of development).

Block Structure

Inherently Music Blocks stores the block structures as multidimensional arrays. Each
block has an array with five arguments: ID, properties (array), X-coord, Y-coord, IDs of
linked blocks (array).

For example, for the block structure

the inner structure is

[
8, ["start",{"collapsed":false,"xcor":0,"ycor":0,"heading”:0,"color":10,"shade":60,"pensize":
5,"grey":185.71428571428572}],
640,158,[null,1,null]

-

["newnote",{"collapsed":false}], 654, 199, [0,2,5,9] 1,
"divide”, 756, 199, [1,3,4] 1,

["number", {"value":1}], 842, 199, [2]],

["number”, {"value":4}], 842, 231, [2]],

"vspace", 668, 231, [1,6]],

"pitch", 668, 263, [5,7,8,19] 1,

["solfege”, {"value":"sol"}], 742, 263, [6] 1,
["number”, {"value":4}], 742, 295, [6] 1,

"hidden", 654, 420, [1,10]],

["newnote”, {"collapsed":false}], 654, 420, [9,11,14,18] 1,
"divide”, 756, 420, [10,12,13]],
["number”,{"value":1}], 842, 420, [11]],
["number",{"value":4}], 842, 452, [11]],

"vspace", 668, 452, [10,15]],

"pitch", 668, 484, [14,16,17,null]],
["solfege”,{"value":"fa"}], 742, 484,[15] 1,
["number",{"value":4}], 742, 516, [15] 1],

"hidden", 654, 578, [10,22]],

"pitch", 668, 326, [6,20,21,null]],
["solfege”,{"value":"do"}], 742, 326, [19]],
["number",{"value":5}], 742, 358, [19]],
"playdrum”, 654, 578, [18,23,null]],
["drumname",{"value":"kick drum"}], 728, 578, [22]]

=N ¥ B N PY B N B

|~

]

[

[

[

[

[

[

[

[

[

[-
[1
[-
[-
[-
[-
[-
[-
[-
[-
[

[

[

[

An Abstract Syntax Tree (AST) will be created from this representation in the ESTree
format specification which can then be converted to the output JavaScript (ES6), using

the serialization library Escodegen (or Astring, etc.).

Object Structure
All the blocks in Music Blocks can be represented in JavaScript by functions, variables,
constants, operators, if-else blocks, while loops, and inline statements. Hence, there is a

need to bother about only a small subset of ESTree specifications while creating the AST.

| intend to create an object-oriented representation of the blocks by designing a custom
class that will store all information about each block, and link implementation code
(rendering, behaviour, etc.) with output JavaScript code (token type, identifier name,
arguments, etc.). I'll then parse the original block structure and convert the blocks into
objects of the said custom class. I'll then create a custom AST using the objects only. I'll

then parse this AST and convert it to the ESTree specified form.

Moving back to the blocks, they can have different behaviour. Some can be
parameterized functions, some can be functions just to call a list of other functions, while

others might be statements. For example, consider the block stack

Here, the start block can be represented by a function which calls other functions one by
one as in the block stack:
function start_1() {
callee_1(...);
callee_2(...);
}

The repeat block can be represented by a while loop which could output like:

var n = 4;
while ((n--) > 0) {

}

The note block can be represented by a function that takes two arguments - a floating
point value, and a list of callback functions. The example above could look like:
function note(value, fns) {
var freq = retrieve_pitch_sum_in_hertz(fns);
play_pitch(freq, value);
}

The pitch block can be represented by a function with a return value, like:
function pitch(name, octave) {
// calculate frequency value
var freq = ...;
return freq;

}

Overall, the block stack becomes:

// function declarations
function start_1() {
var n = 4;

while ((n--) > 0) {
note(
1/ 4,

[
pitch(“sol”, 4);

// for example only
function play(start) {
start();

// call the function
play(start_1);

As evident, a good solution would be an object-oriented approach: each block would be
an object (or instance) of a class, say ‘Block’, with the instance variables to store
information about the respective block, and instance methods to define the behaviour

(e.g. the pitch function represented above). The class declaration could look like:

constructor(bid, bparams, X, Y, 1id) {
this.block_id = bid;
this.block_params = bparams;
this.xcoord = X;
this.ycoord = Y;
this.linked_ids
this.block_type

}

lid;
this.get_block_type(bparams);

get_block_type(bparams) {
return typeof bparams = #String” ? bparams : bparams[0];

}

output_js_token_type() {
switch(this.block_type) {

}
}

output_js_arguments() {
switch(this.block_type) {

}
}

// other instance methods

While parsing blocks, we can fetch all information about the blocks from inherent details
used to render, play, etc. to details about the output code to generate that will be used to
create the AST mentioned earlier. After the AST is created it can easily be converted to
the output code. It is important to note that some blocks (e.g. set master volume) will be
represented by inline statements, e.g. variable assignment. Hence, harmony should be
maintained between the code to keep it valid (e.g. assignment statements should work
on the variable in scope only).

Executing the Generated Code

There is the requirement of mapping the effect producing (e.g. sound playing) functions
in the output code to their respective behaviour in Music Blocks. To solve this a library of
functions would be created and their implementation will be hidden from the user in an
effort to preserve abstraction.

The AST libraries (Esprima, Meriyah) can take care of the Lexical, Syntax, and Semantic
Analysis. Thus, if the generated code is altered, users can know if errors have been
made. If clear, the code can be executed as is.

PLAN OF ACTION

| plan to actively work on this project four days a week from Thursday - Sunday between
IST 12:00 and IST 24:00. | don’t yet have a planned activity to do besides this, during the
span of the event. However, due to critical conditions arising throughout the globe due to
CoVID-19 this year, my schedule might need to move slightly back and forth a little bit.
Due to the said cause, my semester has been suspended for the time being, and I'm not
sure how things will go about after April 15th. So, considering the conditions, | intend to
do things ahead of time to make adjustments for academic engagements if they

coincide. I'll regularly keep my mentors informed about such situations.

Preparation Phase

Due to the uncertainty of events this year, I'd start right off with the preparation right from
1st April. Initially I'll start by exploring what the different 69 JavaScript files in the existing
codebase do, and which of them are relevant to my project. Since my project is centred
around block stacks and their behaviour, I'll be continuing my contributions especially
around them by fixing bugs, in an effort to understand the code related to their

behaviour.

If I am selected, I'll then start communicating with my mentors about how certain things
work and how they can be extracted to make them work independently outside Music
Blocks.

Timeline

As mentioned before, since a similar project has been successfully completed in GSoC
2013, I'd take inspiration from the said, and begin my timeline on the lines of it, while
deciding activities specific to my project.

Figure out what code needs to be shared by Music Blocks and
the exported dependencies to locally achieve the required
June 1-June 14 behaviour, i.e. rendering and playing. Only cover the modules

(2 weeks) required to run the blocks. Restructure the modules so as to
easily retrieve the required functions when having to execute a
block.

Design the class definition for only the rhythm, pitch, and drum
June 15 - June 21 blocks in the Music Palette, while documenting by hand the

(T week) properties each block needs to store (parameters) and what
code they’ll produce.

Write scripts to parse the block stacks (mentioned earlier with
June 22 - June 28

figure) and create an AST of block objects. Convert this AST to
(T week)

ESTree specified format, for serialization libraries to work.

Some (rhythm, pitch, drum) block stacks can now be converted
June 29 - July 3

] to ASTs which can be serialized to get their output code. The
(Phase Evaluation 1)

rest of the blocks can thereafter follow in a similar fashion.

July 4 - July 26 Hand document the properties and output code for the rest of

(3 weeks) the blocks. Complete the class definition for all of them.

Week 1 (Music Palette) meter, intervals, tone, ornament,
ee
volume blocks to be dealt with.

Week 2 (Programming Palette) flow, action, boxes,
ee
number, boolean blocks to be dealt with.

(Graphics Palette) graphics, pen, media,
Week 3 sensors, ensemble blocks to be dealt with as

much as possible.

July 27 - July 31

(Phase Evaluation 2)

Most block stacks can now be exported to JavaScript code.

Aug1-Aug9
(Tweek + 2)

Strip down the HTML to render only the essential Ul elements
(canvas, blocks). Implement the play feature to execute the

blocks on the canvas locally.

Aug 10 - Aug 16
(T week)

Write scripts to analyze the (generated) JavaScript file (for user
made changes). Write the library for the implementation of
effect producing block functions (e.g. say playpitch(...) produces
sound of some frequency). Write the script to run the

(generated) JavaScript file.

Most essential objectives have been completed by now.

Aug 17 - Aug 23
(T week)

Complete finalizing steps, e.g. writing scripts to restructure
output files, garbage collection. Test exporting multiple block
stacks; fix bugs (if any). Complete minor things (if left). Also, this

is a buffer period just in case things shift a little bit.

Progress Report

| plan to set up a blog to document the progress of my work. As in Marion Zepfs case,

she documented her progress through commit messages in an online repository; | plan

to follow her approach. If possible, I'll set up a Wiki page too to keep track of my timeline.

Communication

| have already introduced myself to the mailing list, however | haven’t used the IRC yet. |

intend to more actively participate in these two. Again, it's too early in the process to

foresee trouble, but there’s a high possibility that | might get stuck somewhere. In case, |

stumble around something and the mentors aren’t around, I'll indeed rely on the two said

platforms first, but if there’s no fix, I'll currently suspend the task that | have a doubt in,

and move to another task in the meanwhile, rather than wasting time. I'll contact the

mentors once they’re back.

Post GSoC Plans

've mentioned previously how the Sugar Labs community’s motivation and mine
coincide, and so I'd definitely keep hanging around and keep contributing even post
GSoC. As of now, I've done everything only around Music Blocks. Irrespective of whether
| get selected in GSoC this year, | plan to contribute to Sugar and Sugarizer too. In fact,
for starters, | already have a couple of Sugarizer activity ideas in mind. I've mentioned
earlier that I've built three board games: Minesweeper, Sudoku, and Snakes and
Ladders, as hobby projects using HTML, CSS, and vanilla JavaScript only. I'd probably
start by refactoring and porting these to Sugarizer.

CONCLUSION

Well, now that I've provided a somewhat detailed information about my project and how
I’'m planning to do it, | want to end this with a little bit of arbitrary information regarding
myself. | am currently in my 6th Semester and I’'m introduced to Formal Language and
Automata Theory (Theory of Computation) and Compiler Design. This project so much
seems like a hands-on job for the concepts I've learnt like Language, Grammar, Regular
Expression, Lexical Analysis, Parsing, Semantic Analysis, Intermediate Code Generation,
etc. | think I'll really enjoy doing this project if given the chance to, since I'd get the
opportunity of actually using my classroom knowledge in a programming job.

In addition, I'm a tech enthusiast and | love designing 3D models of real-world objects
and buildings in my free time. | am somewhat obsessed with design perfection and so
you might sometimes find me pointing out too many design issues (kindly, bare with it ;p).

Thanks for reading. Have a great day!

