
GSoC 2020 Proposal

Sugarizer Knowledge Activity Pack

Personal Information
My name is Dhruv Misra and I’m currently enrolled as an undergraduate student at Guru
Gobind Singh Indraprastha University, New Delhi. I’m in my third year pursuing a
degree in Computer Science.

Location​: New Delhi, India (UTC+05:30)
Languages​: English, Hindi (Native)
Preferred working hours​: 10:00 AM - 10:00 PM (can be shifted as per the
requirement)

Contact Information
E-mail ID​: ​dhruvmisra@live.com
Github​: ​dhruvmisra
LinkedIn​: ​https://www.linkedin.com/in/dhruv-misra-35a96a170/
Resume​: ​Resume
IRC Nick​: dhruvmisra or dhruv_misra

Programming Experience
I learned the basics of programming in the final years of high school and spent my
freshman year focusing on Competitive Programming. I developed a keen interest in
Web Development during the second year of university and learnt the javascript
framework Vue.js. I have worked on multiple projects, some personal and some as
interns for different organisations using Vue.js and other web technologies.

As my love for the framework grew, I created my own open-source NPM package for
Vue.js called Vue-event-card. Apart from this, I have worked on various open source
projects, the details of which can be found later in the proposal.

I started contributing to Sugar Labs by fixing bugs and as I became familiar with the
codebase, I started implementing functionalities for different activities. I developed

mailto:dhruvmisra@live.com
https://github.com/dhruvmisra
https://www.linkedin.com/in/dhruv-misra-35a96a170/
https://drive.google.com/open?id=1yayj9BX7Jzwz8WzJdwXtROXw6TF7JXQ6

fully-functional activities for Sugarizer and helped in porting others from Sugar. The
details of these contributions are listed below.

Contributions to Sugar Labs
I have been contributing to the Sugar Labs’ repositories since February and have solved

a lot of bugs and added enhancements. Here is a complete list of Pull Requests:

GitHub Link Title Status

#652 Added Contents button in toolbar for Ebooks Merged

#656 Fixed erase button overflow Merged

#659 Chess Activity for GSoC 2020 Challenge

#662 Fixed text not being visible in Search bar Merged

#667 Fixed text overflow in Shared Notes Merged

#672 Fixed transparent background of dialog box Merged

#674 Fixed opening links in Markdown Merged

#683 Fraction Bounce Activity Port Under Review

#690 Fixed the element selection in password Merged

#234 Added and fixed some Hindi translations Merged

#236 Fixed scroll on reordering activities Merged

#239 Fixed dropbox overflow Merged

#241 Fixed selected text localization Under Review

#242 Fixed query retention after language switch Under Review

Here are the issues I raised:

GitHub Link Title Status

#651 Add an option to navigate back to Contents in Fixed

https://github.com/llaske/sugarizer/pull/652
https://github.com/llaske/sugarizer/pull/656
https://github.com/llaske/sugarizer/pull/659
https://github.com/llaske/sugarizer/pull/662
https://github.com/llaske/sugarizer/pull/667
https://github.com/llaske/sugarizer/pull/672
https://github.com/llaske/sugarizer/pull/674
https://github.com/llaske/sugarizer/pull/683
https://github.com/llaske/sugarizer/pull/690
https://github.com/llaske/sugarizer-server/pull/234
https://github.com/llaske/sugarizer-server/pull/236
https://github.com/llaske/sugarizer-server/pull/239
https://github.com/llaske/sugarizer-server/pull/241
https://github.com/llaske/sugarizer-server/pull/242
https://github.com/llaske/sugarizer/issues/651

Ebook Reader

#655 Video erase button hidden in Record Activity Fixed

#661 Text not visible in search bar of Calligra Activity Fixed

#671 Dialog box has no background in Markdown Fixed

#673 Markdown link opens in frame which crashes the
output

Fixed

#689 Password Tutorial targets the wrong element Fixed

#235 Activity list doesn't scroll while reordering, causes
multiple server calls

Open

#238 Overflow on opening any dropbox Fixed

#240 Selected option's text isn't localized Open

I will keep updating this list as I make more contributions.

https://github.com/llaske/sugarizer/issues/655
https://github.com/llaske/sugarizer/issues/661
https://github.com/llaske/sugarizer/issues/671
https://github.com/llaske/sugarizer/issues/673
https://github.com/llaske/sugarizer/issues/689
https://github.com/llaske/sugarizer-server/issues/235
https://github.com/llaske/sugarizer-server/issues/238
https://github.com/llaske/sugarizer-server/issues/240

Other open-source contributions
Vue-event-card

A unique and interactive way to showcase your events with smooth animations and
flexible designs. This is an NPM package based on Vue.js.

GitHub: ​https://github.com/dhruvmisra/vue-event-card

InfoXpression 2019

Created the official website for InfoXpresison ​which is the annual techno-cultural fest of
University School of Information and Communication Technology. Created on Vue.js
using multiple other javascript libraries.

Website Link: ​https://infoxpression.in/

GitHub contributions: ​https://github.com/techspaceusict/infox19/graphs/contributors

Work Samples
Enfeed

Enfeed is a real-time audience engagement platform for events. The web application
features multiple functionalities like Live Q&As, polls, feedback, chat with fellow
attendees, etc. I was responsible for creating this product as an intern under Xploryo. I
learned to work against deadlines and production level workflows handling multiple
users at this firm.

Built on Nuxt.js, a framework based on Vue.js and Google’s Firebase for backend.
Website Link: ​https://www.enfeed.in/

Webapp Link: ​https://app.enfeed.in/

German Leprosy Relief Association India
GLRA-India in a Non-Profit Organisation which has been serving the cause of leprosy
for more than 50 years. This was a freelancing project I took in winters where we had to
create the entire website for the NGO displaying the various areas of intervention and
porting the existing payment portal.

Built on Vue.js and hosted on cpanel.
Website Link: ​https://www.glraindia.org/

https://github.com/dhruvmisra/vue-event-card
https://infoxpression.in/
https://github.com/techspaceusict/infox19/graphs/contributors
https://www.enfeed.in/
https://app.enfeed.in/
https://www.glraindia.org/

Grynow

Grynow is an influencer marketing company working with influencers on all major
platforms including Youtube, Instagram, TikTok, etc. I worked here as a summer intern
and was responsible for creating the main website for the company which showcases
their exclusive influencers and the various promotions and case studies. I also worked
on some other projects for the founders. I learned about SEO and project management
here.

Built on pure HTML, CSS and JavaScript using minimal external libraries.
Website Link: ​https://www.grynow.in/

Motivation for GSoC
I believe the only constant in my life is the process of learning. I have been fortunate to
have had good teachers and mentors in my life and have worked on multiple projects
and internships but the knowledge and experience that I would gain from the Google
Summer of Code will be unparalleled. It will be one of the most unique learning
opportunities with a chance to interact with the most experienced mentors.

Why choose Sugar Labs?
It has been my desire to do something for the society and reform the standard
educational ideologies to make for a better future. Sugar Labs, from its core, helps
children learn better and faster through their platform. Therefore contributing to and
working with Sugar Labs would help me fulfil this goal.

About the Idea
I would be working on the Knowledge Pack which includes the following two activities:

Curriculum

The Curriculum activity will be a way for a student to self check his/her skills in a set of
knowledge categories and provide multimedia elements to demonstrate these skills.
The Curriculum activity will have the following features:

● It will display a hierarchical set of skills grouped by categories then let the user
explore the tree.

https://www.grynow.in/

● On each skill the user should be able to validate (i.e. acquire skill) and provide
multimedia elements (pictures or sounds coming from Journal) to demonstrate
the skill.

● The activity will provide a settings mode to edit the set of skills:
Create/Update/Delete/Sort skills or categories.

● A category should have a title and a color.
● A skill should have a title and an image.
● It should be possible to generate a Word/ODT document with all skills and dated

multimedia elements.
● It should be possible to share its skills on the network.

Vote

The Vote activity will allow easy building of a poll system. The Vote activity will have the
following features:

● The user can create a poll then share it on the network so any user could vote in
real-time.

● Types of polls:
○ Yes/No
○ Choose value in a list
○ Enter a value

● At the end of the vote, a screen will sum up results of the vote:
○ Statistics
○ Who vote for what
○ Who vote first

● The design of the Vote activity could be inspired by the Exerciser activity:
○ Home screen allow to quickly choose a poll template and run the vote
○ Setting screen allow user to create new poll or customize a poll

● A poll is a label (question) and could integrate a multimedia element (image,
audio, video, speech to text).

Implementation

Curriculum

❖ I created a working prototype on Vue.js which can be found ​here​. (​GitHub Repository​)

https://dhruvmisra.github.io/CurriculumPrototype/
https://github.com/dhruvmisra/CurriculumPrototype

Existing libraries to be used to create this project:

● Html2canvas​ - A JavaScript library to convert HTML and CSS into a canvas and
take a screenshot of it. Used to export to PDF.

● jsPDF​ - The leading HTML5 client solution for generating PDFs. Used along with
html2canvas to generate PDF while exporting.

❖ The main UI of the activity:

Toolbar buttons: Settings Mode, Download, Network

The main screen of the activity will be colourful and will contain user friendly cards for
each skill having a title and an image. The acquired skills will have a thumbs up icon on
the bottom-right. The panel on the right side provides navigation for all categories. It
also shows all the uploaded documents.

https://html2canvas.hertzen.com/
https://parall.ax/products/jspdf

The skills can be searched inside a category

Whenever a skill is clicked, a popup will appear showing any uploaded documents for
that skill and options to mark the skill as required, to upload image/audio. (​NOTE​: The
upload buttons will be linked to Journal and have a different UI, this is just a
demonstration on the web)

Toolbar buttons: Settings Mode, Add Category, Reorder Categories, Network

In the ​Settings mode​, the user will be able to create/update/delete/sort categories and
skills using drag-and-drop. Add Categories will open a popup to add the title,
background colour and icon from the Journal. Add Skill will have a similar popup
specifying title and image from Journal.

❖ Observing the nature of this project, I believe it can be decomposed into multiple Vue.js
components ​which can easily be reused dynamically.

The major data members that need to be persisted are:

● Categories[]: Stores all the categories and the skills in it
● Student{}: Stores the information about the student

Some details of the student, like name and buddy colours can be taken from the Journal
and others can be inputted on the first run of the activity.

Categories and student information will be saved in the ​Journal ​whenever these data
members are updated to have a persisted state and prevent loss of changes.

Sample object of categories array:

{

 ​id​: ​0​,
 ​title​: ​"Category 1"​,
 ​bg​: ​'#4AC1F6'​,

 ​icon​: ​'book'​,
 ​skills​: [
 {

 ​id​: ​0​,
 ​title​: ​"Skill 1"​,
 ​image​: ​"d1.jpg"
 },

 {

 ​id​: ​1​,
 ​title​: ​"Skill 2"​,
 ​image​: ​"d2.jpg"
 }

]

}

Each category has a title, background color and an icon. There is a unique ‘id’ for each
category. Category contains a ‘skills’ array to store all skills under that category. Each
skill has a title, an image and a unique ‘id’. (Note that skill ‘id’ has to be unique inside a
category only, not necessarily among all skills from all categories)

Sample data in student object:

{

 ​name​: ​'ABC'​,
 ​buddyColors​: {
 ​fill​: ​"#FFFF00"​,
 ​stroke​: ​'#FF0000'
 },

 ​age​: ​10​,
 ​rollNo​: ​0​,
 ​acquired​: {
 ​0​: {
 ​0​: {
 ​acquired​: ​true​,
 ​image​: ​null​,
 ​audio​: ​null
 },

 ​1​: {
 ​acquired​: ​false​,
 ​image​: ​null​,
 ​audio​: ​null
 },

 },

 ​1​: {
 ​0​: {
 ​acquired​: ​false​,

 ​image​: ​null​,
 ​audio​: ​null
 },

 }

 }

}

The student object will have basic information like the name, age, rollNo, etc. It will also
have an important ​acquired ​property which would be an object of skills acquired by the
user. The keys of this object denote the category IDs. The inner object has skill IDs for
keys and another special object as the value.

The advantages of using such a structure for the acquired property:

● Reduces redundancy as only the category and skill IDs have to be saved.
● To check if a skill if acquired, a constant time check can be made using the

category ID and skill ID:

student​.​acquired​[​categoryId​][​skillId​].acquired ​ //returns a Boolean

● The remaining image and audio properties can be used to store the uploaded
multimedia elements as objects.

○ Images can be converted to base64 data URL using ​readAsDataURL()
function of FileReader and stored as strings.

○ Audio files can be converted to objectURL strings using
URL.createObjectURL()​ ​and be stored and used easily.

● As all data being handled can be represented by a JavaScript object, it can be
converted to JSON and saved in the Journal.

These main data members will reside at the root component and can be sent to the
various components using ​props ​and the children components can communicate with
the parent using ​emit statements​.

❖ The system design and the hierarchy of components can easily be visualized through
the following diagram:

The text on arrows denote the props being passed from parent to child

Description of the various components:

Component Name Description

App Root component which manages the app and contains main
data members and all other system components like the toolbar.

Student Manages the skills’ grid, side panel for student and the sidebar
for settings mode. Handles addComponent, addSkill and other
emits from child components. Switches between sidebar and
side panel according to the value of settings mode.

Generate This component is required to export the skills of the user to a
Word/PDF document.

Sidebar Visible in settings mode, shows the order of categories and can
be used to add/delete/re-order categories. It is visible only in the

settings mode.

Skills This component shows a grid of skill cards along with the search
bar and category title in normal view. It is reused in the settings
mode to show rearrangeable skill cards with an ‘Add Skill’ option
card.

SidePanel This panel shows the user buddy icon and acts as a navigation
panel for the various categories. It also shows the number and
list of uploaded multimedia elements. Clicking on the uploaded
item will navigate to the skill for which the item was uploaded. It
is visible only in normal view.

SkillCard A card component to control the behaviour of the skill card
throughout the activity.

● Major workflows:

● Adding/deleting Categories

The add button in the toolbar opens a modal in the Sidebar component and after
filling the required details, the component emits the action of ‘categoryAdded’ all
the way up to App where the new category is pushed to the categories array. An
entry corresponding to the new category ID is also made in the student.acquired
object. As the Vue objects are reactive, the props are updated automatically in all
components.

Deleting a category follows a similar pattern with an emit being fired up to the
root App and the final updation taking place there. In this case the category with
the specified ID is spliced from the array.

● Adding/deleting Skills

The add card in Skills component opens a modal to fill the required details. After
completion, the details are sent as an object all the up to App where the new skill
object is pushed to the categories[categoryID].skills array. The
student.acquired[categoryID] is also updated to have an initial object:

{

 ​acquired​: ​false​,
 ​image​: ​null​,
 ​audio​: ​null
}

Deleting a skill also follows the same pattern where the skill matching the skill ID
is spliced from categories[categoryID].

● Adding multimedia elements

Clicking on a skill in normal view will open a modal which will allow the user to
set a skill as ‘acquired’ and also upload an image or audio to support the skill.
The uploaded image/audio is converted to base64 string or object URL and then
saved along with the upload time to
student.acquired[categoryID][skillID].[‘image’/’audio’]​.

The modal also checks for any previous uploads by checking the same location
and displays the content using a dynamic img tag or an audio tag.

A thumbs-up icon is shown on the acquired skills.

● Displaying uploaded documents and linking

In the SidePanel, a ​computed ​property called ‘documents’ is created which
updates whenever the student object is updated. It loops through all acquired
activities and saves their object along with categoryID and skillID to an array
which is returned in the end. This ‘documents’ property is used to render a list of
all uploaded elements using a combination of ​v-for​ and ​v-if​ statements. A click
listener is added to each element using ​v-on:click ​to call a method to navigate to
the corresponding skill.

❖ Exporting data to a Word/PDF document

The Generate component is responsible for generating the required file. It renders the
entire document formatted using CSS and data being filled dynamically using Vue.js
props. Then this DOM element is used to create the required file. The necessity for such
an approach is that the various methods and libraries need the HTML element to be
visible at the time of conversion.

The output being file being rendered below the main activity

I was faced with a challenge here to somehow hide the entire DOM element from the
user but still keep it visible to the generating functions. I solved this problem using some
intelligent CSS and HTML tags. I wrapped the entire DOM element in a wrapper
container div and set styles for this wrapper, specifically:

.doc-container {

 ​height​: ​0​;
 overflow: hidden;

}

This way the entire element is hidden from the user due to height: 0 but still rendered
(visible) for the generating functions to do their job.

JavaScript libraries ​html2canvas ​and ​jsPDF ​were used​ ​to create and download PDF
files. Here multiple screenshots are taken of the DOM element according to page size of
the PDF and placed into the PDF file. The file is saved in the end.

The Word output is generated using a set of special attributes for the html tag and
converting the entire document into a Blob with ​type: 'application/msword'​. This is then
encoded into a URL and downloaded for the user.

❖ Network functionality using ​Presence ​will be added where the user will be able to share
his/her skills with the network. The entire data used for rendering skills is in a js object,
JSON version of which can be sent through the network efficiently.

The following presence actions can be defined:

● init: Connect the users so the host knows who all will receive the skills
● sendSkills: Send the skills JSON to all/some connected members

The host can select which users shall receive the skills. Once received, the skills will
automatically be downloaded on the connected user’s device.

❖ Some sort of rewards (stars or number rating) can be given to the students based on
the number of skills acquired. This would instill a feeling of competition among the
students and would help them learn quicker.

Vote

❖ I created a very basic implementation of this activity in Sugarizer using inline Vue.js
which can be found ​here on GitHub​.

Libraries which will be utilised to create this activity:

● Chart.js​: Simple yet flexible JavaScript library to create numerous types of charts.
This will be used to visualize the statistics. It has almost all types of graphs to
show data interactively. I will be using this to show bar graphs or pie charts in
questions with options.

● Export-to-csv​: Helper library to quickly and easily create a CSV file in the
browser. It will be used to export the poll results to CSV files for external use.

https://github.com/dhruvmisra/sugarizer/tree/votePrototype
https://www.chartjs.org/
https://www.npmjs.com/package/export-to-csv

❖ The main UI of the activity:

Toolbar buttons: Settings Mode, Network

The polls can be started/stopped using the bottom-left icon. Stats can be displayed
using the bottom-right icon in the card.

The add poll page will be similar to the Exerciser activity.

The stats will have the bar graph and lists showing votes. (NOTE: The buddy icons will
be coloured in that user’s colours, in contrast to the way shown in the image)

Voting screen will be adapted to the running poll. It will display a thank you message
after submitting a response.

❖ The major data members are:
● Polls[]: Stores all the polls shown on the Home screen
● Answers[]: Stores all the answers obtained during an active poll
● RunningPoll Stores the information about the poll currently running
● Submitted Stores whether or not the user has answered the runningPoll

Polls array can be saved in the ​Journal ​whenever it is updated to have a persisted
state and prevent loss of changes.

Sample polls array:

polls: [

 {

 ​id​: ​0​,
 ​type​: ​'YesNo'​,
 ​question​: ​'Have you completed the assignment?'
 },

 {

 ​id​: ​1​,
 ​type​: ​'Text'​,
 ​question​: ​'What are your ideas?'
 },

 {

 ​id​: ​2​,
 ​type​: ​'MCQ'​,
 ​question​: ​'Have you made any progress?'​,
 ​answer​: ​0​,
 ​options​: [
 ​'Yes a lot'​,
 ​'Yes, a little'​,
 ​'Not much'​,
 ​'Not at all'
]

 },

],

Each poll has a unique id and a type. The type property is used throughout the system
to handle the various elements of the poll. Types:

● YesNo Contains only a question with yes or no as allowed
answers

● Text Contains only a question with a free text answer
● MCQ Contains a question and an array of options

Images, audios and other ​multimedia content​ can also be added as a property to the
poll object. Any media can be converted to a string representation which can be stored
in the object and parsed as JSON to be sent over the network using ​Presence​.

The answers array would consist of two fields, user and answer. User field stores the
user’s name, networkId and color value. The answer field stores the answer given by
the user (differs according to the type of poll).

❖ The hierarchy of component templates can easily be visualized through the following
diagram:

The communication of data between the components will take place through ​props ​and
emit statements​.

Description of the various components:

Component Name Description

App Root component which manages the app and contains main
data members and all other system components like the toolbar.

Poll Contains a grid of all the poll templates generated by the user
and manages the switching of polls to active/inactive. It is reused
in the settings mode to show edit/delete buttons on the user
templates.

Voting This component is rendered when a shared instance of the
activity is opened. It shows the running poll and handles
submission of votes from the user.

Stats This component has all chart.js elements and other forms of
statistics regarding the current poll. The host can view the

statistics anytime but the connected user will only see the results
when the host allows it or when the voting ends.

Add This component can only be viewed from the settings mode and
is used to create custom poll templates similar to the Exerciser
activity. It also handles editing of poll templates.

❖ This activity is purely based on the network hence it will use Presence extensively. The
host will share a poll to the network and all users joining the shared activity will receive
the poll information and will send their answers to the host. In the end, the results
(answers array) will be shared with everyone in the network to show them the results as
well. The host will have an option to show real-time results to everyone, which will send
the answers array to everyone whenever a new answer is received.

The following presence actions can be defined:

● init: Connect the new user and send them the runningPoll (if any)
or the results

● startPoll: Send the selected poll to all users to start voting
● vote: Send the selected answer to the host
● showResults Send the answers array to all users to display the results

❖ There can be 2 approaches to maintaining results:

1. Sending votes to all users in the network to update all answers array

This can lead to a ​race-around​ condition. The vote from User 1 might reach
before User 3’s vote to the host but the other way around to User 2. This leads to
two different answers and leads to inconsistency in results.

2. Sending votes only to the host and results are sent from the host

This allows for a consistent result as only a single answers array is maintained
and is used to update all users’ results.

❖ Major workflows:

● Adding/editing a poll

A new poll can be added by going into settings mode and selecting the add
button. This displays the Add component which will be similar to the add section
of Exerciser activity. There will be a grid containing types of polls, clicking which
will lead to a form to input the required information and multimedia elements for
the poll. The add button in the end will ​emit ​the poll information contained in an
object back to the App where it will be pushed into the polls array.

Editing a poll will open a similar form containing the poll information. The save
button will emit the new poll object and App will replace the old object by the new
one using pollId.

Deleting a poll will splice the poll object from the polls array using the pollId.

● Starting a poll

Clicking on the play button on any poll on the Home screen will set the
runningPoll to the selected one and share the activity automatically to the
network. The shared and isHost properties are set true. Component displayed is
Poll.

● Voting

Once a user joins the network, the shared property is set true and the Voting
component is displayed. The runningPoll is received along with the ‘init’ action
and is set to the runningPoll. Once answered, the answer is sent using the ‘vote’
action back to the host and the ​submitted ​property is set true. The component is
changed to Stats once the results are received.

● Showing results

The answers array in the host is updated whenever a user votes. This array can
be sent by the host over the network once the polling is stopped or at any time
using an option in the toolbar. The ‘showResults’ action will be received by
connected users which will set answers to the received array and make
statsOpen ​true. This opens the Stats component.

● Displaying stats

The Stats component is shown when the statsOpen property is true. This
property can be triggered by the host on the Home screen or through the
‘showResults’ action. The stats component contains two sections - The graph
and the lists.

The graph section contains a ​Chart.js​ canvas to display a bar graph of all the
votes. The graph is only visible in polls containing options. It is updated
whenever a new answer is received using the ​watch ​property in Vue.js.

The list section has different types of information like who vote first, who vote for
what, etc. The list contains the name of the user along with the buddy icon in that
user’s colors. It also shows the answer given by that user.

The Stats section can be further improved by providing pie chart and line graph options
to visualize the data. Also more information like total votes, winning option or word
cloud(in case of free text) can be shown.

❖ Another good feature will be ​exporting ​the results in a CSV file for use in external
environments. This can be achieved by creating the required array of strings and using
export-to-csv​ library to convert it into a CSV file.

How will it impact Sugar Labs?

The knowledge pack would help students understand two of the most essential
qualities, skill acquisition and equality. Acquiring skills is the fundamental goal of
education. Understanding that everyone is equal and has an equal contribution is
enabled by the voting. Addition of these two activities would prove to be an
enhancement to the learning experience and would also help in increasing student
engagement with the platform.

The Curriculum activity helps the student be aware of the skills they possess and need
to work on. It is a fun activity to track the progress of the student regularly and easily
share it with others in the network. It gives them a reason to learn new skills and help
them understand the importance of introspection.

The Vote activity ensures that everyone in a group has a say in decisions. It enables
teachers to quickly take feedback from students. Voting can be used to create quick
quizzes and it also acts as a conflict resolution technique in large groups.

Availability during GSoC Project

My semester was expected to end on ​May 27 ​but due to the COVID-19 pandemic the
timeline may be volatile. Considering May 27 as the end, I will need a break for 9 days
which I will cover up by putting in extra work hours everyday after my exams.

I will devote at least 40-50 hours a week on my project and can extend my involvement
if the need persists. My aim is to stick to the timeline and I’m confident that the project
will be completed in a timely manner.

I will be committed to this project throughout my GSoC tenure as I have no other
internships or projects to be distracted by.

Timeline

Time Period Task

28 April - 18 May Exploring various technologies and libraries.

Discussing the implementation approaches with
mentors and the community.

Development environment setup and structuring the
project.

18 May - 27 May Break for semester examinations. Staying in touch
with mentors to finalize the feature list.

27 May - 2 June Start creating the Curriculum activity.

Finalize UI design, icons and colours. Implement
basic workflow.

Create Student component and all its underlying
components

Store and retrieve context from the Journal.

2 June - 8 June Add create/update/delete/sort for categories and
skills.

Integrate uploading image/audio from the Journal
and saving them in required skills.

Add the uploaded documents list in the side panel.

8 June - 14 June Linking the documents in the side panel to the skill it
was uploaded for.

Create the Generate component with the design
template of the exported file.

Adding Presence support to connect with other
users.

15 June - 19 June Phase 1 Evaluations​ (Progress: Functional activity
with categories/skills addition, image/audio uploads

from Journal, displaying & linking uploaded
documents, basic generate design and Presence)

20 June - 26 June Finalize the export feature. Adding rewards for
various skills levels.

Add a tutorial for the activity. Make the required
changes after evaluation. Test activity on different
platforms.

Start working on the Vote activity. Finalizing the
Presence actions through discussions with mentors.

27 June - 3 July Create the Home screen with poll cards.

Create Settings mode to add/edit/delete polls. Add
form UI to enter information.

Add Journal support to store polls.

4 July - 12 July Add multimedia element uploads from Journal.

Initialize Presence module. Add all network actions
to share the activity.

Create the Voting component.

13 July - 17 July Phase 2 Evaluations​ (Progress: Home screen,
Settings mode, Journal support, Multimedia
elements upload, running polls on the network)

18 July - 24 July Create Stats component. Add graphs using Chart.js
and lists.

Add option to show real-time stats to all users.

Add export to CSV feature.

25 July - 31 July Finalize the export implementations.

Discuss with mentors and add functionality to other
types of graphs and stats.

1 Aug - 9 Aug Add a tutorial to the activity.

Fix any bugs in both activities and perform various
types of unit and integration testing.

10 Aug - 17 Aug Buffer week to enhance the look and feel of the
activities along with beta testing.

17 Aug - 24 Aug Final Evaluations ​(Progress: Statistics for voting,
real-time options, export to CSV, both activities
completed)

Plans post GSoC period

After my tenure at GSoC, I will continue to maintain the activities and fix any bugs that
show up. I would also continue to work as an active community member and help new
developers and contributors get familiar with the platform. I hope to keep working
towards the growth of this organisation.

At last, I should mention that it has been a great learning experience for me while
contributing to Sugar Labs and the healthy community really helped me work my way
through the platform to utilize my skills. I am very enthusiastic towards working with
Sugar Labs in the Google Summer of Code 2020 and make contributions to help the
community even further. I am determined to make this project successful.

Thank You,
Dhruv Misra
Undergraduate, Third Year
Guru Gobind Singh Indraprastha University, New Delhi

