<html><head><style type="text/css"><!-- DIV {margin:0px;} --></style></head><body><div style="font-family:times new roman,new york,times,serif;font-size:12pt"><div style="font-family: times new roman,new york,times,serif; font-size: 12pt;">I was comparing Bruner to Piaget ...<br><br><div style="font-family: times new roman,new york,times,serif; font-size: 12pt;">----- Original Message ----<br>From: Edward Cherlin &lt;echerlin@gmail.com&gt;<br>To: Alan Kay &lt;alan.nemo@yahoo.com&gt;<br>Cc: Education &lt;its.an.education.project@tema.lo-res.org&gt;<br>Sent: Tuesday, May 6, 2008 10:43:36 AM<br>Subject: Re: [Its.an.education.project] Fw: [Etoys] Some thought about Operational thinking and Squeak<br><br>
On Tue, May 6, 2008 at 8:45 AM, Alan Kay &lt;<a ymailto="mailto:alan.nemo@yahoo.com" href="mailto:alan.nemo@yahoo.com">alan.nemo@yahoo.com</a>&gt; wrote:<br>&gt;<br>&gt; Good "real education" comments here by Ed Cherlin.<br><br>Thank you.<br><br>&gt; By the way, Jerome Bruner's more comprehensive (and nicely more diffident)<br><br>When I write research papers, I will be diffident about drawing<br>conclusions. When I teach Buddhism, I always remember not to teach<br>people unless they ask. (The old rule is that they must ask three<br>times.) I don't do advocacy about life-and-death matters like<br>education that way.<br><br>&gt; approaches to thinking about these matters have been very helpful over the<br>&gt; years.<br><br>He inspired my mother, and she passed it on to me.<br><br>"Any subject can be taught effectively in some intellectually honest<br>form to any child at any stage of development."<br><br>&gt; Also, 6 year olds can do a very important and
 useful version of calculus<br>&gt; using both shapes, growth, numbers and simple arithmetic (cf. my<br>&gt; descriptions of how 1st grade teach Julia Nishijima invented and pulled off<br>&gt; this approach).<br><br>There is almost nothing about her on the Net other than your<br>description of her work. How can I contact her, and where can I find<br>out more about her approach to calculus?<br><br>Do you know why nobody else seems to be doing this?<br><br>&gt; The key idea here (that Montessori understood much more deeply than Piaget)<br>&gt; is that, for children (and most other learners) situated context really<br>&gt; makes huge differences in what seems to be comprehensible and can be<br>&gt; operated with.&nbsp; One part of SC is user interface design ... but there is<br>&gt; much more to this ...<br><br>Context makes a huge difference in what can even be noticed. The<br>classic experiment is to put people in a room with a table and chair<br>and a No
 Smoking sign on the wall, and instruct them to do something<br>requiring string. Hardly anybody finds the string holding up the sign.<br>If the same string holds up an empty frame, almost everybody finds it.<br><br>One of the most important historical examples is the unintentional<br>Sapir-Whorf experiment that resulted from the controversy between<br>Newton and Leibniz over priority in the discovery of caculus. British<br>mathematicians refused to use the Leibniz d notation (dx/dt), and<br>continued with Newton's cumbersome dot notation (ẋ). As a result<br>British contributions to analysis were nearly nil for more than a<br>century. Charles Babbage founded the Analytical Society in 1816 to<br>"replace the dot-age of Cambridge with the pure d-ism of the<br>Continent." He and his friends succeeded in getting the notation used<br>in Cambridge math exams changed, and British contributions to analysis<br>soared.<br><br>The Sapir-Whorf Hypothesis, that
 language sets limits on what people<br>can think, remains controversial in linguistics, but is accepted as a<br>given in mathematics. "By relieving the brain of all unnecessary work,<br>a good notation sets it free to concentrate on more advanced problems,<br>and, in effect, increases the mental power of the race."--Alfred North<br>Whitehead. He then goes on to give examples, particularly of the digit<br>'0', which began as a notational convenience for representing numbers<br>and later turned into the number 0, resulting in the development of<br>whole new branches of algebra.<br><br>The limits that language and notation place on thought are not<br>absolute, because we can create new language, and new math notations,<br>with which to construct a new understanding by expressing what we<br>could not say or think before, and because a new notation can suggest<br>new ideas to us. It generally turns out that the new ideas can be<br>expressed in the old
 language once we know what we are trying to say.<br>Some of Gauss's most impenetrable theorems, from the point of view of<br>his contemporaries, came about because he used complex numbers to<br>discover them, but presented his proofs in real numbers alone.<br><br>I have constructed my own mental model of education from a variety of<br>materials, including a number of such critical experiments and<br>historical examples. Unfortunately, most discourse on education<br>assumes what is to be investigated and what is to be left out. The<br>current context of No Child Left Behind seems to make it impossible to<br>discuss anything real in education in public, and makes it easy to<br>sideline as "out of the mainstream". This appears to be one of the<br>intentions of the program. I notice that the Social Conservatives have<br>been implacable enemies of Bruner's approach for decades.<br><br>&gt; Cheers,<br>&gt;<br>&gt; Alan<br>&gt;<br>&gt; ----- Forwarded Message
 ----<br>&gt; From: Edward Cherlin &lt;<a ymailto="mailto:echerlin@gmail.com" href="mailto:echerlin@gmail.com">echerlin@gmail.com</a>&gt;<br>&gt;<br>&gt; On Sun, May 4, 2008 at 12:55 AM, Hilaire Fernandes &lt;<a ymailto="mailto:hilaire@ofset.org" href="mailto:hilaire@ofset.org">hilaire@ofset.org</a>&gt;<br>&gt; wrote:<br>&gt;&nbsp; &gt;<br>&gt; <a href="http://blog.ofset.org/hilaire/index.php?post/2008/05/01/Operational-thinking" target="_blank">http://blog.ofset.org/hilaire/index.php?post/2008/05/01/Operational-thinking</a><br>&gt;<br>&gt; It would be much easier to evaluate this contribution if it included<br>&gt; specific examples.<br>&gt;<br>&gt; I have been working on some examples in DrGeo, and I disagree with the<br>&gt; author on its unsuitability. Certainly you can't expect children to<br>&gt; discover much with DrGeo if left entirely to their own devices. The<br>&gt; question is what guidance the teacher gives to the child in
 discovery.<br>&gt;<br>&gt; I can build geometric models to illustrate a wide variety of concepts,<br>&gt; and then let children vary the diagram in many ways to see which<br>&gt; relationships remain the same through all variations. For example,<br>&gt; take any triangle and connect the midpoints to divide it into four<br>&gt; smaller triangles. What are the necessary relationships among them? If<br>&gt; you move any vertex of the original triangle, you change its shape and<br>&gt; size. What of the four smaller triangles? Which relationships change,<br>&gt; and which remain constant?<br>&gt;<br>&gt; Similarly for many other constructions, and for symmetries,<br>&gt; tesselations, and other forms that lead to fundamental concepts of<br>&gt; math and science. We will not teach primary schoolers the details of<br>&gt; Emmy Noether's theorem that every symmetry in physics is equivalent to<br>&gt; a conservation law, but we can and should lay the groundwork
 for a<br>&gt; deeper understanding of this essential discovery at an appropriate<br>&gt; age.<br>&gt;<br>&gt; I have the outline of a practical Kindergarten Calculus program, in<br>&gt; which we would teach concepts visually without the algebraic and<br>&gt; numerical apparatus that is essential for calculus calculations. It<br>&gt; can all be done in DrGeo, as well as with physical objects.<br>&gt;<br>&gt; The deepest understanding in math and physics, and in many other<br>&gt; areas, comes when we can see and use two or more representations of<br>&gt; the same ideas, and also see why they are equivalent, and how to turn<br>&gt; any of them into the others. The whole recent proof of Fermat's Last<br>&gt; Theorem came down to an instance of this called the Taniyama-Shimura<br>&gt; conjecture, now proven as the Modularity Theorem, that all elliptic<br>&gt; curves over the rational numbers are modular. This gives us mappings<br>&gt; between three realms:
 elliptic curves, modular functions, and<br>&gt; L-series, that were once seen as quite distinct. We can't even explain<br>&gt; what the theorem is about to young children, or even to most adults,<br>&gt; but we can show them other such mappings within geometry and<br>&gt; arithmetic.<br><br>Analytic geometry, connecting numbers and images, is one of those most<br>often taught in secondary schools.<br><br>&gt; It turns out that in physics, it is necessary to connect the two quite<br>&gt; different realms of mathematical models and experimental results in a<br>&gt; fairly specific way in order to have an effective theory. One of the<br>&gt; greatest and at the same time most familiar and most misunderstood<br>&gt; examples is how the shift from Galilean to Einsteinian relativity,<br>&gt; based on the single painstakingly tested experimental result that the<br>&gt; speed of light is the same for all observers, requires the equivalence<br>&gt; of mass and
 energy.<br>&gt;<br>&gt; If any of this fails to make sense to you, I recommend that you look<br>&gt; on that fact as a sign of some of the greatest failings in<br>&gt; conventional education. For anybody who would like an explanation of<br>&gt; any of this, I can answer some questions and refer to to excellent<br>&gt; published expositions for many more. I will not attempt to walk your<br>&gt; through the proofs, but I can demonstrate the relationships I<br>&gt; describe.<br>&gt;<br>&gt; What we mostly don't have is a path by which children can be guided to<br>&gt; discover much of this themselves. But we have bits and pieces of that<br>&gt; path in work by Alan Kay, Seymour Papert and many others. I have<br>&gt; thought of a few other bits that I hope will add to the enterprise<br>&gt; when I get a chance to work them out in more detail and try them out<br>&gt; on children.<br>&gt;<br>&gt; I think that the hard question is how to get teachers to
 discover<br>&gt; enough of this to be able to use is effectively. Nobel laureate<br>&gt; Richard Feynman said that we don't really understand a subject unless<br>&gt; we can create freshman lecture on it. Mathematicians suggest trying to<br>&gt; explain ideas to your grandmother. I propose that we find out how much<br>&gt; of what we think we know we can explain to children and to teachers.<br>&gt;<br>&gt;&nbsp; &gt;&nbsp; Hilaire<br>&gt;&nbsp; &gt;<br>&gt;&nbsp; &gt;&nbsp; --<br>&gt;&nbsp; &gt;&nbsp; <a href="http://blog.ofset.org/hilaire" target="_blank">http://blog.ofset.org/hilaire</a><br>&gt;&nbsp; &gt;&nbsp; _______________________________________________<br>&gt;&nbsp; &gt;&nbsp; Etoys mailing list<br>&gt;&nbsp; &gt;&nbsp; <a ymailto="mailto:Etoys@lists.laptop.org" href="mailto:Etoys@lists.laptop.org">Etoys@lists.laptop.org</a><br>&gt;&nbsp; &gt;&nbsp; <a href="http://lists.laptop.org/listinfo/etoys"
 target="_blank">http://lists.laptop.org/listinfo/etoys</a><br><br><br>-- <br>Edward Cherlin<br>End Poverty at a Profit by teaching children business<br><a href="http://www.EarthTreasury.org/" target="_blank">http://www..EarthTreasury.org/</a><br>"The best way to predict the future is to invent it."--Alan Kay<br></div></div></div><br>



      <hr size=1>Be a better friend, newshound, and 
know-it-all with Yahoo! Mobile. <a href="http://us.rd.yahoo.com/evt=51733/*http://mobile.yahoo.com/;_ylt=Ahu06i62sR8HDtDypao8Wcj9tAcJ "> Try it now.</a></body></html>